【題目】下列說法正確的是( )

A. 了解“孝感市初中生每天課外閱讀書籍時間的情況”最適合的調查方式是全面調查

B. 甲乙兩人跳繩各10次,其成績的平均數(shù)相等,,則甲的成績比乙穩(wěn)定

C. 三張分別畫有菱形,等邊三角形,圓的卡片,從中隨機抽取一張,恰好抽到中心對稱圖形卡片的概率是

D. “任意畫一個三角形,其內角和是”這一事件是不可能事件

【答案】D

【解析】根據(jù)隨機事件的概念以及概率的意義結合選項可得答案.

A、了解孝感市初中生每天課外閱讀書籍時間的情況最適合的調查方式是抽樣調查,此選項錯誤;

B、甲乙兩人跳繩各10次,其成績的平均數(shù)相等,S2>S2,則乙的成績比甲穩(wěn)定,此選項錯誤;

C、三張分別畫有菱形,等邊三角形,圓的卡片,從中隨機抽取一張,恰好抽到中心對稱圖形卡片的概率是,此選項錯誤;

D、“任意畫一個三角形,其內角和是360°”這一事件是不可能事件,此選項正確.

故選:D.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】某校為打造書香校園,計劃購進甲乙兩種規(guī)格的書柜放置新購置的圖書,調查發(fā)現(xiàn),若購買甲種書柜3個,乙種書柜2個,共需要資金1020元;若購買甲種書柜4個,乙種書柜3個,共需資金1440.

1)甲乙兩種書柜每個的價格分別是多少元?

2)若該校計劃購進這兩種規(guī)格的書柜共20個(其中乙種書柜的數(shù)量不少于甲種書柜的數(shù)量的.設該校計劃購進甲種書柜m個,資金總額為W.Wm的函數(shù)關系式,并請你為該校設計資金最少的購買方案.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】ABC中,ACB90°,ACBC,直線l經(jīng)過點C,BDlAEl,,垂足分別為D、E

1)當A、B在直線l同側時,如圖1,

證明:AECCDB

②若AE=3,BD=4,計算△ACB的面積.(提示:間接求)

(2)A. B在直線l兩側時,如圖2,若AE=3,BD=4,連接ADBE直接寫出梯形ADBE的面積___.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,正方形ABCD中,AB=6,點E在邊CD上,且DE=2.將△ADE沿AE對折得到△AFE,延長EF交邊BC于點G,則BG=___________.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:將矩形紙片ABCD折疊,使點A與點C重合(點D與D'為對應點),折痕為EF,連接AF.

(1)如圖1,求證:四邊形AECF為菱形;

(2)如圖2,若FC=2DF,連接AC交EF于點O,連接DO、D'O,在不添加任何輔助線的情況下,請直接寫出圖2中所有等邊三角形.

(圖1) (圖2)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,正方形的頂點的坐標為,點軸正半軸上,點在第三象限的雙曲線上,過點軸交雙曲線于點,連接,則的面積為__________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,中,,小聰同學利用直尺和圓規(guī)完成了如下操作:

①作的平分線于點;

②作邊的垂直平分線相交于點;

③連接.

請你觀察圖形解答下列問題:

(1)線段,之間的數(shù)量關系是________;

(2)若,求的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】甲、乙兩名同學分別進行6次射擊訓練,訓練成績(單位:環(huán))如下表

第一次

第二次

第三次

第四次

第五次

第六交

9

8

6

7

8

10

8

7

9

7

8

8

對他們的訓練成績作如下分析,其中說法正確的是( 。

A. 他們訓練成績的平均數(shù)相同 B. 他們訓練成績的中位數(shù)不同

C. 他們訓練成績的眾數(shù)不同 D. 他們訓練成績的方差不同

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知,如圖, , ,,,P是邊BC上的一動點,過點PPEAB,垂足為E,延長PE至點Q,使PQ=PC, 聯(lián)結交邊AB于點.

1)求AD的長;

2)設,的面積為y, y關于x的函數(shù)解析式,并寫出定義域;

3)過點C, 垂足為F, 聯(lián)結PF、QF, 試探索當點P在邊BC的什么位置時,為等邊三角形?請指出點P的位置并加以證明.

查看答案和解析>>

同步練習冊答案