3,4,5 | 32+42=52 |
5,12,13, | 52+122=132 |
7,24,25 | 72+242=252 |
9,40,41 | 92+402=412 |
… | … |
17,b,c | 172+b2=c2 |
分析 (1)根據(jù)表格找出規(guī)律再證明其成立;
(2)把已知數(shù)據(jù)代入經(jīng)過(guò)證明成立的規(guī)律即可.
解答 解:(1)以上各組數(shù)的共同點(diǎn)可以從以下方面分析:
①以上各組數(shù)均滿足a2+b2=c2;
②最小的數(shù)(a)是奇數(shù),其余的兩個(gè)數(shù)是連續(xù)的正整數(shù);
③最小奇數(shù)的平方等于另兩個(gè)連續(xù)整數(shù)的和,
如32=9=4+5,52=25=12+13,72=49=24+25,92=81=40+41…
由以上特點(diǎn)我們可猜想并證明這樣一個(gè)結(jié)論:
設(shè)m為大于1的奇數(shù),將m2拆分為兩個(gè)連續(xù)的整數(shù)之和,即m2=n+(n+1),
則m,n,n+1就構(gòu)成一組簡(jiǎn)單的勾股數(shù),
證明:∵m2=n+(n+1)(m為大于1的奇數(shù)),
∴m2+n2=2n+1+n2=(n+1)2,
∴m,n,(n+1)是一組勾股數(shù);
(2)運(yùn)用以上結(jié)論,當(dāng)a=17時(shí),
∵172=289=144+145,
∴b=144,c=145.
點(diǎn)評(píng) 本題考查了勾股數(shù)、勾股定理的逆定理;解答此題要用到勾股定理的逆定理:已知三角形ABC的三邊滿足a2+b2=c2,則三角形ABC是直角三角形.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\sqrt{4+9}=\sqrt{4}+\sqrt{9}$ | B. | 2$\sqrt{2}-\sqrt{2}$=2 | C. | $\sqrt{2}×\sqrt{3}=\sqrt{5}$ | D. | $\frac{{\sqrt{21}}}{{\sqrt{3}}}=\sqrt{\frac{21}{3}}=\sqrt{7}$ |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | m<0 | B. | m>0 | C. | m<3 | D. | m>3 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | ∠A=∠C | B. | AD=CB | C. | BE=DF | D. | AD∥BC |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 點(diǎn)P的坐標(biāo)為(1,2) | |
B. | 關(guān)于x、y的方程組$\left\{\begin{array}{l}{y=x+1}\\{y=mx+n}\end{array}\right.$的解為$\left\{\begin{array}{l}{x=1}\\{y=2}\end{array}\right.$ | |
C. | 直線l1中,y隨x的增大而減小 | |
D. | 直線y=nx+m也經(jīng)過(guò)點(diǎn)P |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com