【題目】如圖,在矩形邊上取一點沿折疊,頂點正好落在邊的中點上,

1)直接寫出的值和的度數(shù);

2)求證:直線是以為直徑的的切線;

3)連接于點的邊上的高.

【答案】1;(2)見詳解;(3

【解析】

(1)由折疊和圓的性質(zhì)直接可求;

(2)OGDE于點G,證明ADOGDO(AAS)即可;

(3)FHCD于點H,證明CEFADF,則有,再證明CFHCAD,即可求FH=.

解:∵OAB的中點,
OA=OB= AB= ×6=3,
由折疊可得:CD=OD,∠CDE=ODECE=OE,
∵矩形ABCD,
CD=AB=6,BC=AD,∠DAB=ABC=90°,
OD=6,
∴∠ADO=30°,y=AD=3,
BC=3
RtOBE中,由勾股定理,得
(3x)2=32+x2,
解得:x=
故答案為x=y=3,∠ADO=30°;

證明:作于點

由折疊得

直線的切線.

解:作于點

,即

的邊上的高為

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】為加強公民節(jié)電意識,某縣將居民用電量分為兩個階梯,月用電量不超過度時按第一個階梯費用收費,超過度時,超出的部分按第二個階梯費用收費下表是該縣居民肖偉家20193月和4月所交電費的收據(jù).求該縣居民用電第--階梯電費和第二階梯電費分別為每度多少元?

電費收據(jù)(幸福里小區(qū)電費專用章)

戶名

肖偉

電表號

月份

3

用電量

金額

20193月收費員林云

電費收據(jù)(幸福里小區(qū)電費專用章)

戶名

肖偉

電表號

月份

4

用電量

金額

20194月收費員林云

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在矩形ABCD中,AB=6BC=8,點EF分別為邊AD,BC上的一個動點,連接EF,以EF為對稱軸折疊四邊形CDEF,得到四邊形MNFE,點D,C的對應點分別為M,N,當點N恰好落在AB的三等分點時,CF的長為___

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】拋物線y=﹣x2+bx+cx軸交于AB兩點(點AB左邊),與y軸交于點C

1)如圖1,已知A(﹣1,0),B3,0).

①直接寫出拋物線的解析式;

②點Hx軸上,D1,0),連接AC,DC,HC,若CD平分∠ACH,求點H的坐標;

2)如圖2,直線y=﹣1與拋物線y=﹣x2+bx+c交于點D,點ED關于x軸對稱.

①若點D在拋物線對稱軸的右側,求證:DBAE

②若點D在拋物線對稱軸的左側,請直接判斷,BD是否垂直AE?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】劉徵是我國古代最杰出的數(shù)學家之一,他在《九算術圓田術)中用“割圓術”證明了圓面積的精確公式,并給出了計算圓周率的科學方法(注:圓周率=圓的周長與該圓直徑的比值)“割圓術”就是以“圓內(nèi)接正多邊形的面積”,來無限逼近“圓面積”,劉徽形容他的“割圓術”說:割之彌細,所失彌少,割之又割,以至于不可割,則與圓合體,而無所失矣.劉徽計算圓周率是從正六邊形開始的,易知圓的內(nèi)接正六邊形可分為六個全等的正三角形,每個三角形的邊長均為圓的半徑R.此時圓內(nèi)接正六邊形的周長為6R,如果將圓內(nèi)接正六邊形的周長等同于圓的周長,可得圓周率為3.當正十二邊形內(nèi)接于圓時,如果按照上述方法計算,可得圓周率為_____.(參考數(shù)據(jù):sinl5°=0.26)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖是一款拋物線型落地燈筒示意圖,防滑螺母C為拋物線支架的最高點,燈罩D距離地面1.5米,最高點C距燈柱的水平距離為1.6米,燈柱AB1.5米,若茶幾擺放在燈罩的正下方,則茶幾到燈柱的距離AE為多少米(

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】截至北京時間202032611:30,全球新冠肺炎確診病例突破47萬例,已有60個國家宣布進入緊急狀態(tài),國外較多醫(yī)護人員不得不重復使用一次性口罩和防護裝備.深圳海王星辰福田某藥店購進A、B兩種一次性口罩共1500個,已知購進A種一次性口罩和B種一次性口罩的費用分別為3000元和2000元,且A種一次性口罩的單價比B種一次性口罩單價多1元,求A、B兩種一次性口罩的單價各是多少?設A種一次性口罩單價為x元,根據(jù)題意,列方程正確的是(

A.B.

C.D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在足夠大的空地上有一段長為a米的舊墻MN,某人利用舊墻和木欄圍成一個矩形菜園ABCD,其中AD≤MN,已知矩形菜園的一邊靠墻,另三邊一共用了100米木欄.

(1)若a=20,所圍成的矩形菜園的面積為450平方米,求所利用舊墻AD的長;

(2)求矩形菜園ABCD面積的最大值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在△ABC中, AB=BC,OAC的中點,PAC上的一個動點(P點不與點A,O,C重合).過點A,C作直線BP的垂線,垂足分別為點E和點F,連接OE,OF

1)如圖1,判斷線段OEOF的數(shù)量關系是什么,請說明理由;

2)如圖2,當∠ABC=90°時,請判斷線段OEOF之間的數(shù)量關系和位置關系,并說明理由?

查看答案和解析>>

同步練習冊答案