【題目】服裝店購進(jìn)一批秋衣,價(jià)格為每件30元.物價(jià)部門規(guī)定其銷售單價(jià)不高于每件70元,經(jīng)市場調(diào)查發(fā)現(xiàn):日銷售量y(件)是銷售單價(jià)x(元)的一次函數(shù),且當(dāng)x=60時(shí),y=80;x=50時(shí),y=100.在銷售過程中,每天還要支付其他費(fèi)用450元.
(1)求出y與x的函數(shù)關(guān)系式.
(2)求該服裝店要想銷售這批秋衣日獲利750元,售價(jià)應(yīng)定多少元?
(3)請銷售單價(jià)為多少元時(shí),該服裝店日獲利最大?最大獲利是多少元?
【答案】(1)y=-2x+200(30≤x≤70);(2)40元;(3)單價(jià)為65元時(shí),日獲利最大,為2000元.
【解析】
(1)根據(jù)y與x成一次函數(shù)解析式,設(shè)為y=kx+b,把x與y的兩對值代入求出k與b的值,即可確定出y與x的解析式,并求出x的范圍即可;
(2)根據(jù)利潤=單價(jià)×銷售量-其它費(fèi)用列出關(guān)于x的一元二次方程,解之即可;
(3)利用二次函數(shù)的性質(zhì)求出w的最大值,以及此時(shí)x的值即可.
解:(1)設(shè)y=kx+b,根據(jù)題意得:
,
解得:k=-2,b=200,
∴y=-2x+200(30≤x≤70);
(2)(x-30)(-2x+200)-450=750;
解得::x1=40,x2=90,
∵物價(jià)不超過每件70元,
∴x2=90舍去;
答:銷售單價(jià)為40元時(shí),獲利750元.
(3)設(shè)日獲利為w,
則w=-2(x-65)2+2000,
∴x=65時(shí),w有最大值為2000元
∴當(dāng)銷售單價(jià)為65元時(shí),該服裝店日獲利最大,為2000元.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,某校八年級(1)班學(xué)生利用寒假期間到郊區(qū)進(jìn)行社會(huì)實(shí)踐活動(dòng),活動(dòng)之余,同學(xué)們準(zhǔn)備攀登附近的一個(gè)小山坡,從B點(diǎn)出發(fā),沿坡腳15°的坡面以5千米/時(shí)的速度行至D點(diǎn),用了10分鐘,然后沿坡比為1:的坡面以3千米/時(shí)的速度達(dá)到山頂A點(diǎn),用了5分鐘,求小山坡的高(即AC的長度)(精確到0.01千米)(sin15°≈0.2588,cos15°≈0.9659,≈1.732)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)如圖(1),△ABC和△AOD都是等腰直角三角形,∠BAC=∠EAD=90°,點(diǎn)B在線段AE上,點(diǎn)C在線段AD上,請直接寫出線段BE與線段CD的數(shù)量關(guān)系與位置關(guān)系;
(2)如圖(2),將圖(1)中的△ABC繞點(diǎn)A順時(shí)針施轉(zhuǎn)α(0°<α<360°),那么(1)中線段BE與線段CD的關(guān)系是否還成立?如果成立,請你結(jié)合圖(2)給出的情形進(jìn)行證明;如果不成立,說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知點(diǎn)A1、A2、…A2018在函數(shù)y=2x2位于第二象限的圖象上,點(diǎn)B1、B2,…,B2018在函數(shù)y=2x2位于第一象限的圖象上,點(diǎn)C1,C2,…,C2018在y軸的正半軸上,若四邊形OA1C1B1、C1A2C2B2,…,C2017A2018C2018B2018都是正方形,則正方形C2017A2018C2018B2018的邊長是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是⊙O的直徑,點(diǎn)D在⊙O上,∠BAD的平分線交⊙O于點(diǎn)C,過點(diǎn)C作CE⊥AD于點(diǎn)E,過點(diǎn)E作EH⊥AB于點(diǎn)H,交AC于點(diǎn)G,交⊙O于點(diǎn)F、M,連接BC.
(1)求證:EC是⊙O的切線;
(2)若AG=GC,試判斷AG與GH的數(shù)量關(guān)系,并說明理由;
(3)在(2)的條件下,若⊙O的半徑為4,求FM的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線l1的表達(dá)式為:y=-3x+3,且直線l1與x軸交于點(diǎn)D,直線l2經(jīng)過點(diǎn)A,B,直線l1,l2交于點(diǎn)C.
(1)求點(diǎn)D的坐標(biāo);
(2)求直線l2的解析表達(dá)式;
(3)求△ADC的面積;
(4)在直線l2上存在異于點(diǎn)C的另一點(diǎn)P,使得△ADP與△ADC的面積相等,求點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,把拋物線y=x2平移得到拋物線m,拋物線m經(jīng)過點(diǎn)A(﹣6,0)和原點(diǎn)O(0,0),它的頂點(diǎn)為P,它的對稱軸與拋物線y=x2交于點(diǎn)Q,則圖中陰影部分的面積為 ▲ .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖在平面直角坐標(biāo)系中,O為坐標(biāo)原點(diǎn),A、B分別是y軸正半軸和x軸正半軸上的點(diǎn),OA=OB=a,a滿足等式2a﹣2×16=64.
(1)求點(diǎn)A的坐標(biāo);
(2)動(dòng)點(diǎn)C從O點(diǎn)出發(fā)沿x軸負(fù)半軸方向勻動(dòng),速度為每秒2個(gè)單位長度,過點(diǎn)B作BD⊥AC于D,交y軸于點(diǎn)E,設(shè)C的運(yùn)動(dòng)時(shí)間為t,用含t的代數(shù)式表示線段AE的長.
(3)在(2)的條件下過點(diǎn)O作OF⊥BD于點(diǎn)F,交AB于點(diǎn)G,連接EG,是否存在t值,使∠AGE=∠OGB,若存在求出t值,若不存在說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,用火柴棒擺-列正方形圖案,第①個(gè)圖案用了4根,第②個(gè)圖案用了12根,第③個(gè)圖案用了24根,按照此規(guī)律,擺出第⑦個(gè)圖案用火柴棒的根數(shù)是( )
A.110B.112C.114D.116
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com