【題目】如圖,一次函數(shù)y1=x+4的圖象與反比例函數(shù)y2=的圖象交于A(﹣1,a),B兩點,與x軸交于點C.
(1)求k.
(2)根據(jù)圖象直接寫出y1>y2時,x的取值范圍.
(3)若反比例函數(shù)y2=與一次函數(shù)y1=x+4的圖象總有交點,求k的取值.
【答案】(1)-3;(2)﹣3<x<﹣1;(3)k≥﹣4且k≠0.
【解析】
(1)把點A坐標(biāo)代入一次函數(shù)關(guān)系式可求出a的值,確定點A的坐標(biāo),再代入反比例函數(shù)關(guān)系式可求出k的值,
(2)一次函數(shù)與反比例函數(shù)聯(lián)立,可求出交點B的坐標(biāo),再根據(jù)圖象可得出當(dāng)y1>y2時,x的取值范圍.
(3)若反比例函數(shù)y2=與一次函數(shù)y1=x+4的圖象總有交點,就是x2+4x﹣k=0有實數(shù)根,根據(jù)根的判別式求出k的取值范圍.
(1)一次函數(shù)y1=x+4的圖象過A(﹣1,a),
∴a=﹣1+4=3,
∴A(﹣1,3)代入反比例函數(shù)y2=得,
k=﹣3;
(2)由(1)得反比例函數(shù),由題意得,
,解得,,,
∴點B(﹣3,1)
當(dāng)y1>y2,即一次函數(shù)的圖象位于反比例函數(shù)圖象上方時,
自變量的取值范圍為:﹣3<x<﹣1;
(3)若反比例函數(shù)y2=與一次函數(shù)y1=x+4的圖象總有交點,
即,方程=x+4有實數(shù)根,也就是x2+4x﹣k=0有實數(shù)根,
∴16+4k≥0,
解得,k≥﹣4,
∵k≠0,
∴k的取值范圍為:k≥﹣4且k≠0.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,圖中的小方格都是邊長為1的正方形,與 是以點O為位似中心的位似圖形,它們的頂點都在小正方形的頂點上.
畫出位似中心點O;
直接寫出與的位似比;
以位似中心O為坐標(biāo)原點,以格線所在直線為坐標(biāo)軸建立平面直角坐標(biāo)系,并直接寫出各頂點的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線y=a(x﹣m)2+2m(m≠0)經(jīng)過原點,其頂點為P,與x軸的另一交點為A.
(1)P點坐標(biāo)為 ,A點坐標(biāo)為 ;(用含m的代數(shù)式表示)
(2)求出a,m之間的關(guān)系式;
(3)當(dāng)m>0時,若拋物線y=a(x﹣m)2+2m向下平移m個單位長度后經(jīng)過點(1,1),求此拋物線的表達(dá)式;
(4)若拋物線y=a(x﹣m)2+2m向下平移|m|個單位長度后與x軸所截的線段長,與平移前相比有什么變化?請直接寫出結(jié)果.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平行四邊形ABCD中,點E為AD的中點,延長CE交BA的延長線于點F.
(1)求證:AB=AF;
(2)若BC=2AB,∠BCD=100°,求∠ABE的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠B=90°,AC=10,BC=6,線段AC的垂直平分線MN分別交AC、AB于M、N兩點,則△BCN的面積是( 。
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,有下列結(jié)論:①abc>0;②2a+b=0;③若m為任意實數(shù),則a+b>am2+bm;④a﹣b+c>0;⑤若ax12+bx1=ax22+bx2,且x1≠x2,則x1+x2=2.其中,正確結(jié)論的個數(shù)為( )
A.1B.2C.3D.4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】紅紅和娜娜按下圖所示的規(guī)則玩“錘子、剪刀、布”游戲,
游戲規(guī)則:若一人出“剪刀”,另一人出“布”,則出“剪刀”者勝;若一人出“錘子”,另一人出“剪刀”,則出“錘子”者勝;若一人出“布”,另一人出“錘子”,則出“布”者勝,若兩人出相同的手勢,則兩人平局.
下列說法中錯誤的是
A. 紅紅不是勝就是輸,所以紅紅勝的概率為
B. 紅紅勝或娜娜勝的概率相等
C. 兩人出相同手勢的概率為
D. 娜娜勝的概率和兩人出相同手勢的概率一樣
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC是邊長為3的等邊三角形,△BDC是等腰三角形,且∠BDC=120°.以D為頂點作一個60°角,使其兩邊分別交AB于點M,交AC于點N,連接MN,則△AMN的周長為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,等邊三角形邊長是定值,點是它的外心,過點任意作一條直線分別交于點,將沿直線折疊,得到,若分別交于點,連接,則下列判斷錯誤的是( )
A.△≌△
B.的周長是一個定值
C.四邊形的面積是一個定值
D.四邊形的面積是一個定值
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com