【題目】如圖,在平面直角坐標(biāo)系中,點B,C的坐標(biāo)分別為(2,0)和(6,0).
(1)確定A、D、E、F、G的坐標(biāo);
(2)求四邊形ABFG的面積.
【答案】(1)A(0,3),D(8,1),E(7,3),F(5,2),G(3,5);(2)13
【解析】
(1)觀察圖象,根據(jù)已知條件即可確定A、D、E、F、G的坐標(biāo);(2)如圖分別過G,F作直線垂直于y軸和x軸,垂足分別為P,M,兩條直線交于點N.利用“割補(bǔ)法”求四邊形ABFG的面積即可.
(1)A(0,3),D(8,1),E(7,3),F(5,2),G(3,5).
(2)如圖,分別過G,F作直線垂直于y軸和x軸,垂足分別為P,M,兩條直線交于點N.則P(0,5),M(5,0),N(5,5),
正方形OMNP面積為5×5=25;S△AOB=×2×3=3,S△BMF=×3×2=3,S△APG=×2×3=3,S△GFN=×2×3=3,故S△BFG=25-3-3-3-3=13.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】將兩張寬度相等的矩形紙片疊放在一起得到如圖所示的四邊形ABCD.
(1)求證:四邊形ABCD是菱形;
(2)如果兩張矩形紙片的長都是8,寬都是2.那么△DCB的面積是否存在最大值或最小值?如果存在,請求出來;如果不存在,請簡要說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線AB、CD相交于點O,OE是∠AOD的平分線,若∠AOC=60°,OF⊥OE.
(1)判斷OF把∠AOC所分成的兩個角的大小關(guān)系并證明你的結(jié)論;
(2)求∠BOE的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商品交易會上,一商人將每件進(jìn)價為5元的紀(jì)念品,按每件9元出售,每天可售出32件.他想采用提高售價的辦法來增加利潤,經(jīng)試驗,發(fā)現(xiàn)這種紀(jì)念品每件提價2元,每天的銷售量會減少8件.
(1)當(dāng)售價定為多少元時,每天的利潤為140元?
(2)寫出每天所得的利潤y(元)與售價x(元/件)之間的函數(shù)關(guān)系式,每件售價定為多少元,才能使一天所得的利潤最大?最大利潤是多少元?(利潤=(售價﹣進(jìn)價)×售出件數(shù))
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,,,且滿足方程組,連接,.
(1)求的面積;
(2)動點從點出發(fā),以每秒個單位長度的速度沿軸向左運動,連接,設(shè)點運動的時間為秒, 的面積為, 試用含的式子表示;
(3)在的條件下,點,點是上一點,連接,點在延長線上,且,連接, 當(dāng)點在軸負(fù)半軸上,,, 四邊形的面積與的面積比為時,求此時值和點的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線與坐標(biāo)軸分別交于A、B兩點,OA=8,OB=6.動點P從O點出發(fā),沿路線O→A→B以每秒2個單位長度的速度運動,到達(dá)B點時運動停止.
(1)則A點的坐標(biāo)為_____,B兩點的坐標(biāo)為______;
(2)當(dāng)點P在OA上,且BP平分∠OBA時,則此時點P的坐標(biāo)為______;
(3)設(shè)點P的運動時間為t秒(0≤t≤4),△BPA的面積為S,求S與t之間的函數(shù)關(guān)系式:并直接寫出當(dāng)S=8時點P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,有下列5個結(jié)論:
①abc>0;②b<a+c;③4a+2b+c>0;④2c<3b;⑤a+b>m(am+b)(m≠1的實數(shù)).
其中正確的結(jié)論有( )
A.2個
B.3個
C.4個
D.5個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點D為⊙O上一點,點C在直徑BA的延長線上,且∠CDA=∠CBD.
(1)判斷直線CD和⊙O的位置關(guān)系,并說明理由.
(2)過點B作⊙O的切線BE交直線CD于點E,若AC=2,⊙O的半徑是3,求∠BEC的正切值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列各式中,運算結(jié)果正確的是( )
A.(﹣1)3+(﹣3.14)0+2﹣1=﹣
B.2x﹣2=
C. =﹣4
D.a2a3=a5
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com