【題目】閱讀下列材料,并解決有關(guān)問題:

我們知道,,現(xiàn)在我們可以用這一結(jié)論來化簡含有絕對值的式子,例如化簡式子時,可令,分別求得、分別為的零點值。在有理數(shù)范圍內(nèi),零點值可將全體有理數(shù)不重復且不遺漏地分成如下三種情況:(1);(2);(3)≥2。從而化簡代數(shù)式可分為以下3種情況:

(1)時,原式;

(2)當時,原式;

(3)≥2時,原式

綜上所述:原式

通過以上閱讀,請你類比解決以下問題:

(1)填空:的零點值分別為

(2)化簡式子。

【答案】(1) ;(2)

【解析】

(1)令x+2=0x-4=0,求出x的值即可得出|x+2||x-4|的零點值,

(2)零點值x=3x=-4可將全體實數(shù)分成不重復且不遺漏的如下3種情況:x<-4、-4≤x<3x≥3.分該三種情況找出的值即可.

解:(1),

(2)由,

①當時,原式,

②當時,原式,

③當時,原式,

綜上所述:原式,

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】已知:如圖,BD=DE=EF=FG.

(1)若∠ABC=20°,ABC內(nèi)符合條件BD=DE=EF=FG的折線(如DE、EF、FG)共有幾條?若∠ABC=10°呢?試一試,并簡述理由.

(2)若∠ABC=m°(0<m<90),你能找出一個折線條數(shù)nm之間的關(guān)系嗎?若有,請找出來;若無,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】圖①是一個長為2m,寬為2n的長方形紙片,將長方形紙片沿圖中虛線剪成四個形狀和大小完全相同的小長方形,然后拼成圖②所示的一個大正方形.

(1)用兩種不同的方法表示圖②中小正方形(陰影部分)的面積:

方法一:S小正方形=   

方法二:S小正方形=   ;

(2)(m+n)2,(m﹣n)2,mn這三個代數(shù)式之間的等量關(guān)系為   

(3)應(yīng)用(2)中發(fā)現(xiàn)的關(guān)系式解決問題:若x+y=9,xy=14,求x﹣y的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,ABCDCB有公共邊BC,且AB=DC,作AEBC,DFBC,垂足分別為E、FAE=DF,那么求證AC=BD時,需要證明三角形全等的是Rt△ABE≌Rt△DCF,△AECDFB.說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,直線y=﹣x+8與x軸、y軸分別相交于點A、B,設(shè)M是OB上一點,若將ABM沿AM折疊,使點B恰好落在x軸上的點B′處.求:

(1)點B′的坐標;

(2)直線AM所對應(yīng)的函數(shù)關(guān)系式.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知點A、B、C、D均在以BC為直徑的圓上,AD∥BC,AC平分∠BCD,∠ADC=120°,四邊形ABCD的周長為10,則圖中陰影部分的面積為

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,轉(zhuǎn)盤上1、2、3、4四個數(shù)字分別代表雞、猴、鼠、羊四種生肖郵票(每種郵票各兩枚,雞年郵票面值“80分”,其它郵票都是面值“1.20元”),轉(zhuǎn)動轉(zhuǎn)盤后,指針每落在某個數(shù)字所在扇形一次就表示獲得該種郵票一枚.
(1)任意轉(zhuǎn)動轉(zhuǎn)盤一次,獲得猴年郵票的概率是
(2)任意轉(zhuǎn)動轉(zhuǎn)盤兩次,求獲得的兩枚郵票可以郵寄一封需2.4元郵資的信件的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】小張在自家土地上平整出了一塊苗圃,并將這塊苗圃分成了四個長方形區(qū)域,其尺寸如圖所示圖中長度單位:米,小張計劃在這四個區(qū)域上按圖中所示分別種植草本花卉 1 號、2 號、3 號、4 號.

(1)用式子表示這塊苗圃的總面積;

(2)已知種植草本花卉 1 號、2 號、3 號、4 號的成本分別是每平方米 4 元、6 元、8 元、10 元.

①用式子表示小張在這塊苗圃上種植草本花卉的總成本;

②當 a=9 時,求小張在這塊苗圃上種植草本花卉的總成本.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,△ABC,AD平分BAC,DGBC且平分BC,DEABE,DFACF.求證:BE=CF.

查看答案和解析>>

同步練習冊答案