8.如圖,已知數(shù)軸上點(diǎn)A表示的數(shù)為6,B是數(shù)軸上位于點(diǎn)A左側(cè)一點(diǎn),且AB=22.
(1)寫(xiě)出數(shù)軸上點(diǎn)B表示的數(shù)-16;
(2)點(diǎn)P、Q是該數(shù)軸上的兩個(gè)動(dòng)點(diǎn),動(dòng)點(diǎn)P從A點(diǎn)出發(fā),以每秒5個(gè)單位的長(zhǎng)度的速度沿?cái)?shù)軸向左勻速運(yùn)動(dòng),動(dòng)點(diǎn)Q從點(diǎn)B出發(fā),以每秒3個(gè)單位長(zhǎng)度的速度沿?cái)?shù)軸向右勻速運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為t(t>0)秒.
①用含t的代數(shù)式表示線段PA和BQ的長(zhǎng)度,AP=5t;BQ=3t.
②若點(diǎn)P、Q同時(shí)出發(fā),t為多少秒時(shí),P、Q之間的距離恰好等于2?
③當(dāng)t=6時(shí),AP=30;若M為AP的中點(diǎn),N為BP的中點(diǎn),在備用圖中畫(huà)出P、M、N三點(diǎn),并求出線段MN的長(zhǎng).

分析 (1)根據(jù)已知可得B點(diǎn)表示的數(shù)為6-22;
(2)點(diǎn)P運(yùn)動(dòng)x秒時(shí),在點(diǎn)C處追上點(diǎn)Q,則AC=5x,BC=3x,列出代數(shù)式解答即可;
①當(dāng)點(diǎn)P在點(diǎn)A、B兩點(diǎn)之間運(yùn)動(dòng)時(shí),②當(dāng)點(diǎn)P運(yùn)動(dòng)到點(diǎn)B的左側(cè)時(shí),利用中點(diǎn)的定義和線段的和差求出MN的長(zhǎng)即可.

解答 解:(1)∵點(diǎn)A表示的數(shù)為6,B在A點(diǎn)左邊,AB=22,
∴點(diǎn)B表示的數(shù)是6-22=-16;
故答案為:-16;
(2)①PA=5t,BQ=3t;
②當(dāng)點(diǎn)P、Q相遇之前時(shí):由題意可得:3t+2+5t=22,
解得:t=2.5;
當(dāng)點(diǎn)P、Q相遇之后時(shí):由題意可得:3t-2+5t=22,
解得:t=3;
答:在2.5或3秒時(shí),P、Q之間的距離恰好等于2;
③PA=5t=30,
MN=MP-NP=$\frac{1}{2}AP-\frac{1}{2}BP=\frac{1}{2}×30-\frac{1}{2}(30-22)=11$.
故答案為:5t;3t;30

點(diǎn)評(píng) 本題考查了數(shù)軸一元一次方程的應(yīng)用,用到的知識(shí)點(diǎn)是數(shù)軸上兩點(diǎn)之間的距離,關(guān)鍵是根據(jù)題意畫(huà)出圖形,注意分兩種情況進(jìn)行討論.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

18.解下列方程:
(1)12-4(x-3)=7(x+5);
(2)$\frac{x-1}{2}$+$\frac{2x+1}{5}$=$\frac{3x+1}{4}$-1.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

19.如圖,拋物線y=ax2+bx+c的圖象經(jīng)過(guò)點(diǎn)A(-2,0),點(diǎn)B(4,0),點(diǎn)D(2,4),與y軸交于點(diǎn)C,作直線BC,連接AC、CD.
(1)求拋物線的函數(shù)表達(dá)式;
(2)E是拋物線上的點(diǎn),求滿足∠ECD=∠ACO的點(diǎn)E的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

16.如圖,在平面直角坐標(biāo)系xOy中,一次函數(shù)y=kx+b的圖象與反比例函數(shù)y=$\frac{m}{x}$的圖象交于A(2,3),B(-3,n)兩點(diǎn).
(1)求一次函數(shù)和反比例函數(shù)的解析式;
(2)若P是y軸上一點(diǎn),且滿足△PAB的面積是5,直接寫(xiě)出點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

3.如圖,已知O為直線AB上一點(diǎn),OC平分∠AOD,∠BOD=3∠DOE,∠COE=α,求∠BOE的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

13.已知關(guān)于x的方程$\frac{3x-4}{(x-1)(x-2)}$=$\frac{A}{x-1}$+$\frac{B}{x-2}$,求A、B的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

20.如圖,在平面直角坐標(biāo)系中,直線y=$\frac{1}{2}$x+2與x軸交于點(diǎn)A,與y軸交于點(diǎn)C,拋物線y=ax2+bx+c的對(duì)稱軸是x=-$\frac{3}{2}$且經(jīng)過(guò)A、C兩點(diǎn),與x軸的另一交點(diǎn)為點(diǎn)B,連結(jié)BC.
(1)填空:點(diǎn)A、點(diǎn)B和點(diǎn)C的坐標(biāo)分別為A(-4,0),B(1,0),C(0,2);
(2)求證:△AOC∽△COB;
(3)求拋物線解析式;
(4)若點(diǎn)P為直線AC上方的拋物線上的一點(diǎn),連結(jié)PA,PC,求△PAC面積的最大值,并求出此時(shí)點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

17.已知關(guān)于x的一元二次方程(a-5)x2-4x-1=0.
(1)若該方程有實(shí)數(shù)根,求a的取值范圍.
(2)若該方程一個(gè)根為-1,求方程的另一個(gè)根.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

18.如圖,AB是半圓O的直徑,C、D是半圓O上的兩點(diǎn),且OD∥BC,OD與AC交于點(diǎn)E.
(1)若∠B=80°,求∠CAD的度數(shù);
(2)若AB=8,AC=6,求DE的長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案