【題目】如圖,已知O為直線AD上一點(diǎn),∠AOC與∠AOB互補(bǔ),OM、ON分別是∠AOC、∠AOB的平分線,∠MON=56°.
⑴ ∠COD與∠AOB相等嗎?請說明理由;
⑵ 求∠BOC的度數(shù);
⑶ 求∠AOB與∠AOC的度數(shù).
【答案】(1)∠COD=∠AOB.理由見解析;(2)∠BOC=112°;(3)∠AOC=146°.
【解析】試題分析:(1)根據(jù)題意可得∠AOC+∠AOB=180°, ∠AOC+∠COD=180°,可以根據(jù)同角的補(bǔ)角相等得到∠COD=∠AOB;
(2)根據(jù)OM、ON分別是∠AOC、∠AOB的平分線可得∠AOM=∠COM,∠AON=∠BON,再利用教的和差可得∠BOC=2 ∠MON;
(3)由(1)得∠COD=∠AOB, 再根據(jù)∠AOB+∠BOC+∠COD=180°可求出∠AOB的度數(shù),然后根據(jù)平角的定義即可得到∠AOC.
解:⑴∠COD=∠AOB.理由如下:
如圖 ∵點(diǎn)O在直線AD上
∴∠AOC+∠COD=180°
又∵∠AOC與∠AOB互補(bǔ)
∴∠AOC+∠AOB=180°
∴∠COD=∠AOB
⑵∵ OM、ON分別是∠AOC、∠AOB的平分線
∴∠AOM=∠COM,∠AON=∠BON
∴∠BOC=∠BOM+∠COM=∠BOM+∠AOM=(∠MON-∠BON)+(∠MON+∠AON)=2 ∠MON=112°
⑶由⑴得:∠COD=∠AOB
∵ ∠AOB+∠BOC+∠COD=180°
∴ ∠AOB=(180°-∠BOC)=(180°-112°)=34°
∴ ∠AOC=180°-∠AOB=180°-34°=146°.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:正方形ABCD,E為平面內(nèi)任意一點(diǎn),連接DE,將線段DE繞點(diǎn)D順時(shí)針旋轉(zhuǎn)90°得到DG,連接EC,AG.
(1)當(dāng)點(diǎn)E在正方形ABCD內(nèi)部時(shí), ①根依題意,在圖1中補(bǔ)全圖形;
②判斷AG與CE的數(shù)量關(guān)系與位置關(guān)系并寫出證明思路.
(2)當(dāng)點(diǎn)B,D,G在一條直線時(shí),若AD=4,DG=2 ,求CE的長.(可在備用圖中畫圖)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知A=x2﹣ax﹣1,B=2x2﹣ax﹣1,且多項(xiàng)式2A﹣B的值與字母x取值無關(guān),求a的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】等腰三角形的底邊BC=8cm,且|AC﹣BC|=2cm,則腰長AC的長為( )
A. 10cm或6cm B. 10cm C. 6cm D. 8cm或6cm
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB、CD為⊙O的直徑,弦AE∥CD,連接BE交CD于點(diǎn) F,過點(diǎn)E作直線EP與CD的延長線交于點(diǎn)P,使∠PED=∠C.
(1)求證:PE是⊙O的切線;
(2)求證:ED平分∠BEP;
(3)若⊙O的半徑為5,CF=2EF,求PD的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,任意四邊形ABCD中,E,F(xiàn),G,H分別是AB,BC,CD,DA上的點(diǎn),對于四邊形EFGH的形狀,某班學(xué)生在一次數(shù)學(xué)活動(dòng)課中,通過動(dòng)手實(shí)踐,探索出如下結(jié)論,其中錯(cuò)誤的是( )
A.當(dāng)E,F(xiàn),G,H是各邊中點(diǎn),且AC=BD時(shí),四邊形EFGH為菱形
B.當(dāng)E,F(xiàn),G,H是各邊中點(diǎn),且AC⊥BD時(shí),四邊形EFGH為矩形
C.當(dāng)E,F(xiàn),G,H不是各邊中點(diǎn)時(shí),四邊形EFGH可以為平行四邊形
D.當(dāng)E,F(xiàn),G,H不是各邊中點(diǎn)時(shí),四邊形EFGH不可能為菱形
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線C1:y=ax2﹣4ax﹣5(a>0).
(1)當(dāng)a=1時(shí),求拋物線與x軸的交點(diǎn)坐標(biāo)及對稱軸;
(2)①試說明無論a為何值,拋物線C1一定經(jīng)過兩個(gè)定點(diǎn),并求出這兩個(gè)定點(diǎn)的坐標(biāo);
②將拋物線C1沿這兩個(gè)定點(diǎn)所在直線翻折,得到拋物線C2,直接寫出C2的表達(dá)式;
(3)若(2)中拋物線C2的頂點(diǎn)到x軸的距離為2,求a的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如果(x﹣2)(x+3)=x2+px+q,那么p、q的值為( 。
A.p=5,q=6
B.p=1,q=﹣6
C.p=1,q=6
D.p=5,q=﹣6
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com