【題目】如圖,AB是半徑為2的⊙O的直徑,直線l與AB所在直線垂直,垂足為C,OC=3,P是圓上異于A、B的動點,直線AP、BP分別交l于M、N兩點.
(1)當∠A=30°時,MN的長是 ;
(2)求證:MCCN是定值;
(3)MN是否存在最大或最小值,若存在,請寫出相應的最值,若不存在,請說明理由;
(4)以MN為直徑的一系列圓是否經過一個定點,若是,請確定該定點的位置,若不是,請說明理由.
【答案】(1);(2)MCNC=5;(3)a+b的最小值為2;(4)以MN為直徑的一系列圓經過定點D,此定點D在直線AB上且CD的長為.
【解析】
(1)由題意得AO=OB=2、OC=3、AC=5、BC=1,根據(jù)MC=ACtan∠A= 、CN=可得答案;
(2)證△ACM∽△NCB得,由此即可求得答案;
(3)設MC=a、NC=b,由(2)知ab=5,由P是圓上異于A、B的動點知a>0,可得b=(a>0),根據(jù)反比例函數(shù)的性質得a+b不存在最大值,當a=b時,a+b最小,據(jù)此求解可得;
(4)設該圓與AC的交點為D,連接DM、DN,證△MDC∽△DNC得,即MCNC=DC2=5,即DC=,據(jù)此知以MN為直徑的一系列圓經過定點D,此頂點D在直線AB上且CD的長為.
(1)如圖所示,根據(jù)題意知,AO=OB=2、OC=3,
則AC=OA+OC=5,BC=OC﹣OB=1,
∵AC⊥直線l,
∴∠ACM=∠ACN=90°,
∴MC=ACtan∠A=5×=,
∵∠ABP=∠NBC,
∴∠BNC=∠A=30°,
∴CN=,
則MN=MC+CN=+=,
故答案為:;
(2)∵∠ACM=∠NCB=90°,∠A=∠BNC,
∴△ACM∽△NCB,
∴,
即MCNC=ACBC=5×1=5;
(3)設MC=a、NC=b,
由(2)知ab=5,
∵P是圓上異于A、B的動點,
∴a>0,
∴b=(a>0),
根據(jù)反比例函數(shù)的性質知,a+b不存在最大值,當a=b時,a+b最小,
由a=b得a=,解之得a=(負值舍去),此時b=,
此時a+b的最小值為2;
(4)如圖,設該圓與AC的交點為D,連接DM、DN,
∵MN為直徑,
∴∠MDN=90°,
則∠MDC+∠NDC=90°,
∵∠DCM=∠DCN=90°,
∴∠MDC+∠DMC=90°,
∴∠NDC=∠DMC,
則△MDC∽△DNC,
∴,即MCNC=DC2,
由(2)知MCNC=5,
∴DC2=5,
∴DC=,
∴以MN為直徑的一系列圓經過定點D,此定點D在直線AB上且CD的長為.
科目:初中數(shù)學 來源: 題型:
【題目】如圖.在△ABC中,∠ACB=60°,AC=1,D是邊AB的中點,E是邊BC上一點.若DE平分△ABC的周長,則DE的長是_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖:圖象①②③均是以P0為圓心,1個單位長度為半徑的扇形,將圖形①②③分別沿東北,正南,西北方向同時平移,每次移動一個單位長度,第一次移動后圖形①②③的圓心依次為P1P2P3,第二次移動后圖形①②③的圓心依次為P4P5P6…,依此規(guī)律,P0P2018=_____個單位長度.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】現(xiàn)有甲騎電瓶車,乙騎自行車從湖州西山漾公園絲綢小鎮(zhèn)門口出發(fā)沿同一路線勻速前往太湖龍之夢樂園.設乙行駛的時間為x(h),甲、乙兩人距出發(fā)點的路程S甲、S乙關于x的函數(shù)圖像如圖①所示;甲、乙兩人之間的路程差y關于x的函數(shù)圖像如圖②所示:
請你解決以下問題
(1)甲的速度是_____km/h;乙的速度是______km/h;
(2)對比圖①、②可知:a=______;b=_____.
(3)乙出發(fā)多少時間,甲、乙兩人路程差為7.5km?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平行四邊形ABCD中,E、F分別在AD、BC邊上,且AE=CF.
求證:(1)△ABE≌△CDF;
(2)四邊形BFDE是平行四邊形.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平行四邊形ABCD中,AE平分∠DAB,已知CE=6,BE=8,DE=10.
(1)求證:∠BEC=90°;
(2)求cos∠DAE.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,Rt△OAB的頂點A在x軸的正半軸上,頂點B的坐標為(3,),點C的坐標為(1,0),點P為斜邊OB上的一動點,則PA+PC的最小值_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某企業(yè)生產一種節(jié)能產品,投放市場供不應求.若該企業(yè)每月的產量保持在一定的范圍,每套產品的生產成本不高于50萬元,每套產品的售價不低于120萬元.已知這種產品的月產量(套)與每套的售價(萬元)之間滿足關系式,月產量(套)與生產總成本(萬元)存在如圖所示的函數(shù)關系.
(1)直接寫出與之間的函數(shù)關系式;
(2)求月產量的取值范圍;
(3)當月產量(套)為多少時,這種產品的利潤(萬元)最大?最大利潤是多少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為了傳承中華優(yōu)秀傳統(tǒng)文化,某校組織了一次八年級350名學生參加的“漢字聽寫”大賽,賽后發(fā)現(xiàn)所有參賽學生的成績均不低于50分.為了更好地了解本次大賽的成績分布情況,隨機抽取了其中若干名學生的成績作為樣本進行整理,得到下列不完整的統(tǒng)計圖表:
成績x/分 | 頻數(shù) | 頻率 |
50≤x<60 | 2 | 0.04 |
60≤x<70 | 6 | 0.12 |
70≤x<80 | 9 | b |
80≤x<90 | a | 0.36 |
90≤x≤100 | 15 | 0.30 |
請根據(jù)所給信息,解答下列問題:
(1)a= ,b= ;
(2)請補全頻數(shù)分布直方圖;
(3)這次比賽成績的中位數(shù)會落在 分數(shù)段;
(4)若成績在90分以上(包括90分)的為“優(yōu)”等,則該年級參加這次比賽的350名學生中成績“優(yōu)”等的約有多少人?
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com