【題目】如圖,2條直線相交有1個交點,3條直線相交最多有3個交點,4條直線相交最多有6個交點…按這樣的規(guī)律若n條直線相交交點最多有28個,則此時n的值為( 。

A. 18 B. 10 C. 8 D. 7

【答案】C

【解析】

2條直線相交時最多有1個交點、3條直線相交時最多有1+23個交點、4條直線相交時最多有1+2+36個交點,;可知n條直線相交,交點最多有1+2+3+…+n1 ,再將28代入計算即可.

解:∵2條直線相交時,最多有1個交點;

3條直線相交時,最多有1+23個交點;

4條直線相交時,最多有1+2+36個交點;

n條直線相交,交點最多有1+2+3+…+n1,

28時,解得:n8或﹣7(舍)

故若有8條直線相交,最多有28個交點;

故選:C

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在菱形ABCD中,∠BAD=120°,點E、F分別在邊AB、BC上,△BEF與△GEF關于直線EF對稱,點B的對稱點是G,且點G在邊AD上,若EG⊥AC,AB=2,則FG的長為

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,在平面直角坐標系中,直線 AB 分別交 x 軸、y 軸于點Aa,0)點 B0,b),且ab滿足a2+4a+4+|2a+b|0

1a ;b

(2)點 P 在直線AB的右側,且APB=45°

①若點Px軸上,則點P的坐標為

ABP 為直角三角形,求點P的坐標;

(2)如圖2,在(2)的條件下,點P在第四象限,BAP=90°,APy軸交于點MBPx軸交于點N,連接MN,求證:MP平分BMN的一個外角.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】隨著“足球進校園”工作的推進,全國中小學生的身體素質普遍增強.某校為了準確把握學生在“足球進校園”活動開展后的體質情況,從全校學生中隨機抽取部分學生進行身體素質測試,測試的結果分為A、B、C、D、E五個等級,并根據(jù)樣本繪制了兩幅統(tǒng)計圖,請根據(jù)統(tǒng)計圖的信息回答下列問題:
(1)本次抽樣調查基抽取了學生多少人?
(2)在本次被調查的學生中,求測試結果為D等級的學生人數(shù),并補全條形統(tǒng)計圖.
(3)若該學校共有學生1200人,請你根據(jù)抽樣調查的結果估計該學校全體學生中身體素質測試結果為A等級的學生有多少人?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,拋物線y=﹣ x2+bx+c與x軸交于點A(﹣4,0)、B(6,0)兩點,與y軸交于點C.
(1)如圖l,求拋物線的解析式;

(2)如圖2,點P為第一象限拋物線上一點,連接PC、PA,PA交y軸于點F,設點P的橫坐標為t,△CPF的面積為S.求S與t的函數(shù)關系式(不要求寫出自變量t的取值范圍);

(3)如圖3,在(2)的條件下,連接BC,過點P作PD∥y軸變BC于點D,點H為AF中點,且點N(0,1),連接NH、BH,將∠NHB繞點H逆時針旋轉,使角的一條邊H落在射線HF上,另一條邊HN變拋物線于點Q,當BH=BD時,求點Q坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】“綠色出行,低碳健身”已成為廣大市民的共識.為方便市民出行,東臺市推出了公共自行車系統(tǒng),收費以小時為單位,每次使用不超過1小時的免費,超過1小時后,不足1小時的部分按1小時收費.小紅同學通過調查得知,自行車使用時間為3小時,收費2元;使用時間為4小時,收費3元.她發(fā)現(xiàn)當使用時間超過1小時后用車費用與使用時間之間存在一次函數(shù)的關系.

(1)設使用自行車的費用為元,使用時間為小時(為大于1的整數(shù)),求的函數(shù)解析式;

(2)若小紅此次使用公共自行車5小時,則她應付多少元費用?

(3)若小紅此次使用公共自行車付費6元,求她所使用自行車的時間.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,直線相交于點的平分線,

1)若,請求出的度數(shù);

2平分嗎?為什么?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,正方形AOBC的兩邊在坐標軸上,D是OB的中點,直線CD的函數(shù)關系式為y=2x﹣6,則△CDE的面積為 . (平方單位)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,五邊形ABCDE的內角都相等,且AB=BC,AC=AD,求∠CAD的度數(shù).

查看答案和解析>>

同步練習冊答案