【題目】如圖所示,把一個(gè)多邊形的一個(gè)頂點(diǎn)與其余各頂點(diǎn)連接起來(lái),可以把這個(gè)多邊形分割成若干個(gè)三角形.

(1)把一個(gè)100邊形的一個(gè)頂點(diǎn)與其余各頂點(diǎn)連接起來(lái),一共可以連幾條線段?

(2)在(1)中,這些線段將100邊形分割成幾個(gè)三角形?

【答案】(1)97 (2)98

【解析】

(1)觀察四邊形、五邊形、六邊形、七邊形可知與這個(gè)頂點(diǎn)相鄰的兩個(gè)頂點(diǎn)之間的線段是多邊形的邊,因此可以推斷出100邊形的一個(gè)頂點(diǎn)與其余各頂點(diǎn)連接起來(lái),一共可以連(100-3)條線段;

(2)觀察所給的圖形可以得到(1)中的線段將100邊形分割成(100-2)個(gè)三角形.

(1)觀察四邊形一個(gè)頂點(diǎn)與其余頂點(diǎn)連接起來(lái)有1條線段,即1=4-3,

五邊形一個(gè)頂點(diǎn)與其余頂點(diǎn)連接起來(lái)有2條線段,即2=5-3,

六邊形一個(gè)頂點(diǎn)與其余頂點(diǎn)連接起來(lái)有3條線段,即3=6-3,

七邊形一個(gè)頂點(diǎn)與其余頂點(diǎn)連接起來(lái)有4條線段,即4=7-3,

……,

所以n邊形一個(gè)頂點(diǎn)與其余頂點(diǎn)連接起來(lái)有(n-3)條線段,

100-3=97,

所以100邊形一個(gè)頂點(diǎn)與其余頂點(diǎn)連接起來(lái)有97條線段;

(2)觀察可知四邊形一個(gè)頂點(diǎn)與其余頂點(diǎn)連接的線段將四邊形分成2個(gè)小三角形,即2=4-2,

五邊形一個(gè)頂點(diǎn)與其余頂點(diǎn)連接的線段將五邊形分成3個(gè)小三角形,即3=5-2,

六邊形一個(gè)頂點(diǎn)與其余頂點(diǎn)連接的線段將六邊形分成4個(gè)小三角形,即4=6-2,

七邊形一個(gè)頂點(diǎn)與其余頂點(diǎn)連接的線段將七邊形分成5個(gè)小三角形,即5=7-2,

……,

所以,n邊形一個(gè)頂點(diǎn)與其余頂點(diǎn)連接的線段將n邊形分成(n-2)個(gè)小三角形,

100-2=98,

所以在(1)中,這些線段將100邊形分割成98個(gè)三角形.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】閱讀下面材料:
如圖1,在平面直角坐標(biāo)系xOy中,直線y1=ax+b與雙曲線y2=交于A(1,3)和B(﹣3,﹣1)兩點(diǎn).
觀察圖象可知:
①當(dāng)x=﹣3或1時(shí),y1=y2;
②當(dāng)﹣3<x<0或x>1時(shí),y1>y2 , 即通過(guò)觀察函數(shù)的圖象,可以得到不等式ax+b>的解集.
有這樣一個(gè)問(wèn)題:求不等式x3+4x2﹣x﹣4>0的解集.
某同學(xué)根據(jù)學(xué)習(xí)以上知識(shí)的經(jīng)驗(yàn),對(duì)求不等式x3+4x2﹣x﹣4>0的解集進(jìn)行了探究.

下面是他的探究過(guò)程,請(qǐng)將(2)、(3)、(4)補(bǔ)充完整:
(1)將不等式按條件進(jìn)行轉(zhuǎn)化:
當(dāng)x=0時(shí),原不等式不成立;
當(dāng)x>0時(shí),原不等式可以轉(zhuǎn)化為x2+4x﹣1>;
當(dāng)x<0時(shí),原不等式可以轉(zhuǎn)化為x2+4x﹣1<;
(2)構(gòu)造函數(shù),畫出圖象
設(shè)y3=x2+4x﹣1,y4= , 在同一坐標(biāo)系中分別畫出這兩個(gè)函數(shù)的圖象.
雙曲線y4=如圖2所示,請(qǐng)?jiān)诖俗鴺?biāo)系中畫出拋物線y3=x2+4x﹣1;(不用列表)
(3)確定兩個(gè)函數(shù)圖象公共點(diǎn)的橫坐標(biāo)
觀察所畫兩個(gè)函數(shù)的圖象,猜想并通過(guò)代入函數(shù)解析式驗(yàn)證可知:滿足y3=y4的所有x的值為;
(4)借助圖象,寫出解集
結(jié)合(1)的討論結(jié)果,觀察兩個(gè)函數(shù)的圖象可知:不等式x3+4x2﹣x﹣4>0的解集為.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,將ABC放在每個(gè)小正方形的邊長(zhǎng)為1的網(wǎng)格中,點(diǎn)A,點(diǎn)B,點(diǎn)C均落在格點(diǎn)上.

(1)計(jì)算AC2+BC2的值等于   ;

(2)請(qǐng)?jiān)谌鐖D所示的網(wǎng)格中,用無(wú)刻度的直尺,畫出一個(gè)平行四邊形ABEF,使得該平行四邊形的面積等于16;

(3)請(qǐng)?jiān)谌鐖D所示的網(wǎng)格中,用無(wú)刻度的直尺,畫出一個(gè)矩形ABMN,使得該矩形的面積等于AC2+BC2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,在平面直角坐標(biāo)系中,O為坐標(biāo)原點(diǎn).直線y=kx+b與拋物線y=mx2x+n同時(shí)經(jīng)過(guò)A(0,3)、B(4,0).
(1)求m,n的值.
(2)點(diǎn)M是二次函數(shù)圖象上一點(diǎn),(點(diǎn)M在AB下方),過(guò)M作MN⊥x軸,與AB交于點(diǎn)N,與x軸交于點(diǎn)Q.求MN的最大值.
(3)在(2)的條件下,是否存在點(diǎn)N,使△AOB和△NOQ相似?若存在,求出N點(diǎn)坐標(biāo),不存在,說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了加強(qiáng)學(xué)生的安全意識(shí),某校組織了學(xué)生參加安全知識(shí)競(jìng)賽.從中抽取了部分學(xué)生成績(jī)(得分?jǐn)?shù)取正整數(shù),滿分為100分)進(jìn)行統(tǒng)計(jì),已知A組的頻數(shù)aB組的頻數(shù)b24,繪制統(tǒng)計(jì)頻數(shù)分布直方圖(未完成)和扇形圖如下,請(qǐng)解答下列問(wèn)題:

1)樣本容量為:______,a______

2n________,E組所占比例為________;

3)補(bǔ)全頻數(shù)分布直方圖;

4)若成績(jī)?cè)?/span>80分以上記作優(yōu)秀,全校共有2000名學(xué)生,估計(jì)成績(jī)優(yōu)秀學(xué)生有_________名.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為深化義務(wù)教育課程改革,某校積極開(kāi)展拓展性課程建設(shè),計(jì)劃開(kāi)設(shè)藝術(shù)、體育、勞技、文學(xué)等多個(gè)類別的拓展性課程,要求每一位學(xué)生都自主選擇一個(gè)類別的拓展性課程.為了了解學(xué)生選擇拓展性課程的情況,隨機(jī)抽取了部分學(xué)生進(jìn)行調(diào)查,并將調(diào)查結(jié)果繪制成如下統(tǒng)計(jì)圖(部分信息未給出):

根據(jù)統(tǒng)計(jì)圖中的信息,解答下列問(wèn)題:

)求本次被調(diào)查的學(xué)生人數(shù).

)將條形統(tǒng)計(jì)圖補(bǔ)充完整.

)若該校共有名學(xué)生,請(qǐng)估計(jì)全校選擇體育類的學(xué)生人數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,點(diǎn)C的坐標(biāo)為(4,0),一次函數(shù)的圖像分別交x軸、y軸于點(diǎn)A、點(diǎn)B.

⑴ 若點(diǎn)D是直線AB在第一象限內(nèi)的點(diǎn),且BDBC,試求出點(diǎn)D的坐標(biāo).

⑵ 在⑴的條件下,若點(diǎn)Q是坐標(biāo)軸上的一個(gè)動(dòng)點(diǎn),試探索在第一象限是否存在另一個(gè)點(diǎn)P,使得以B、D、P、Q為頂點(diǎn)的四邊形是菱形BD為菱形的一邊)?若存在,請(qǐng)直接寫出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在矩形ABCD中,AD=4,M是AD的中點(diǎn),點(diǎn)E是線段AB上一動(dòng)點(diǎn),連接EM并延長(zhǎng)交線段CD的延長(zhǎng)線于點(diǎn)F.

(1)如圖1,求證:AE=DF;
(2)如圖2,若AB=2,過(guò)點(diǎn)M作 MG⊥EF交線段BC于點(diǎn)G,判斷△GEF的形狀,并說(shuō)明理由;
(3)如圖3,若AB= ,過(guò)點(diǎn)M作 MG⊥EF交線段BC的延長(zhǎng)線于點(diǎn)G.
①直接寫出線段AE長(zhǎng)度的取值范圍;
②判斷△GEF的形狀,并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】(徐州中考)如圖,在ABC中,∠ABC90°,BAC60°,ACD是等邊三角形,EAC的中點(diǎn),連接BE并延長(zhǎng)交DC于點(diǎn)F,求證:

(1)ABE≌△CFE;

(2)四邊形ABFD是平行四邊形.

查看答案和解析>>

同步練習(xí)冊(cè)答案