【題目】如圖,在平行四邊形ABCD中,E、F分別是邊BC、AD上的點(diǎn),有下列條件:
①AE∥CF;②BE=FD;③∠1=∠2;④AE=CF.
若要添加其中一個(gè)條件,使四邊形AECF一定是平行四邊形,則添加的條件可以是( )
A. ①②③④ B. ①②③ C. ②③④ D. ①③④
【答案】B
【解析】
由四邊形ABCD是平行四邊形,可得AD∥BC,AD=BC,∠BAD=∠BCD,然后利用平行四邊形的判定分別分析求解,即可求得答案;注意利用舉反例的方法可排除錯(cuò)誤答案.
∵四邊形ABCD是平行四邊形,
∴AD∥BC,AD=BC,∠BAD=∠BCD,
∴當(dāng)①AE∥CF時(shí),四邊形AECF是平行四邊形;故①正確;
當(dāng)②BE=FD時(shí),CE=AF,則四邊形AECF是平行四邊形;故②正確;
當(dāng)③∠1=∠2時(shí),∠EAF=∠ECF,
∵∠EAF+∠AEC=180,∠AFC+∠ECF=180,
∴∠AFC=∠AEC,
∴四邊形AECF是平行四邊形;故③正確;
④若AE=AF,則四邊形AECF是平行四邊形或等腰梯形,故④錯(cuò)誤.
故選B.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形ABCD中,P為AD邊上一點(diǎn),沿直線BP將△ABP翻折至△EBP(點(diǎn)A的對應(yīng)點(diǎn)為點(diǎn)E),PE與CD相交于點(diǎn)O,且OE=OD.
(1)求證:PE=DH;
(2)若AB=10,BC=8,求DP的長.
【答案】(1)見解析;(2).
【解析】試題分析:(1) 先證明△DOP≌△EOH,再利用等量代換得到PE=DH.
(2) 設(shè)DP=x, Rt△BCH中,先用 x表示三角形三邊,利用勾股定理列式解方程.
試題解析:
(1)解:證明:∵OD=OE,∠D=∠E=90°,∠DOP=∠EOH,
∴△DOP≌△EOH,
∴OP=OH,
∴PO+OE=OH+OD,
∴PE=DH.
(2)解:設(shè)DP=x,則EH=x,BH=10﹣x,
CH=CD﹣DH=CD﹣PE=10﹣(8﹣x)=2+x,
∴在Rt△BCH中,BC2+CH2=BH2
(2+x)2+82=(10﹣x)2,
∴x=,
∴DP=.
【題型】解答題
【結(jié)束】
25
【題目】某文教店老板到批發(fā)市場選購A,B兩種品牌的繪圖工具套裝,每套A品牌套裝進(jìn)價(jià)比B品牌每套套裝進(jìn)價(jià)多2.5元,已知用200元購進(jìn)A種套裝的數(shù)量是用75元購進(jìn)B種套裝數(shù)量的2倍.
(1)求A,B兩種品牌套裝每套進(jìn)價(jià)分別為多少元?
(2)若A品牌套裝每套售價(jià)為13元,B品牌套裝每套售價(jià)為9.5元,店老板決定,購進(jìn)B品牌的數(shù)量比購進(jìn)A品牌的數(shù)量的2倍還多4套,兩種工具套裝全部售出后,要使總的獲利超過120元,則最少購進(jìn)A品牌工具套裝多少套?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】與在平面直角坐標(biāo)系中的位置如圖所示.
(1)分別寫出各點(diǎn)的坐標(biāo):___________,_________,_______________.
(2)是由經(jīng)過怎樣的平移變換得到的?答:___________________.
(3)若點(diǎn)是內(nèi)部一點(diǎn),則內(nèi)部的對應(yīng)點(diǎn)的坐標(biāo)為___________.
(4)求的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】“低碳環(huán)保,綠色出行”的概念得到廣大群眾的接受,越來越多的人喜歡選擇騎自行車作為出行工具.小軍和爸爸同時(shí)騎車去圖書館,爸爸先以150米/分的速度騎行一段時(shí)間,休息了5分鐘,再以m米/分的速度到達(dá)圖書館.小軍始終以同一速度騎行,兩人騎行的路程為y(米)與時(shí)間x(分鐘)的關(guān)系如圖.請結(jié)合圖象,解答下列問題:
(1)填空:a=________;b=________;m=________.
(2)若小軍的速度是 120 米/分,求小軍第二次與爸爸相遇時(shí)距圖書館的距離.
(3)在(2)的條件下,爸爸自第二次出發(fā)后,騎行一段時(shí)間后與小軍相距100 米,此時(shí) 小軍騎行的時(shí)間為________分鐘.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)如圖①,已知直線l1∥l2,且l3和l1,l2分別交于A,B兩點(diǎn),點(diǎn)P在線段AB上,則∠1,∠2,∠3之間的等量關(guān)系是____;
(2)如圖②,點(diǎn)A在B處北偏東40°方向,在C處北偏西45°方向,則∠BAC=____°.
(3)如圖③,∠ABD和∠BDC的平分線交于點(diǎn)E,BE交AB于點(diǎn)F,∠1+∠2=90°,試說明:AB∥AB,并探究∠2與∠3的數(shù)量關(guān)系.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,動(dòng)點(diǎn)P在平面直角坐標(biāo)系中按圖中箭頭所示方向運(yùn)動(dòng),第1次從原點(diǎn)運(yùn)動(dòng)到點(diǎn)(1,1),第2次接著運(yùn)動(dòng)到點(diǎn)(2,0),第3次接著運(yùn)動(dòng)到點(diǎn)(3,2),…,按這樣的運(yùn)動(dòng)規(guī)律,經(jīng)過第2017次運(yùn)動(dòng)后,動(dòng)點(diǎn)P的坐標(biāo)是______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖①,OABC是一張放在平面直角坐標(biāo)系中的矩形紙片,O為原點(diǎn),點(diǎn)A在x軸的正半軸上,點(diǎn)C在y軸的正半軸上,OA=5,OC=4.
(1)在OC邊上取一點(diǎn)D,將紙片沿AD翻折,使點(diǎn)O落在BC邊上的點(diǎn)E處,則D點(diǎn)的坐標(biāo);E點(diǎn)的坐標(biāo) .
(2)如圖②,若AE上有一動(dòng)點(diǎn)P(不與A、E重合)自A點(diǎn)沿AE方向向E點(diǎn)勻速運(yùn)動(dòng),運(yùn)動(dòng)的速度為每秒1個(gè)單位長度,設(shè)運(yùn)動(dòng)的時(shí)間為t秒(0<t<5),過P點(diǎn)作ED的平行線交AD于點(diǎn)M,過點(diǎn)M作AE的平行線交DE于點(diǎn)N.求四邊形PMNE的面積S與時(shí)間t之間的函數(shù)關(guān)系式;t取何值時(shí),S有最大值,最大值是多少?
(3)在(2)的條件下,當(dāng)t為何值時(shí),以A、M、E為頂點(diǎn)的三角形為等腰三角形,并求出相應(yīng)時(shí)刻點(diǎn)M的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,BC=AC=5,AB=8,CD為AB邊的高,點(diǎn)A在x軸上,點(diǎn)B在y軸上,點(diǎn)C在第一象限,若A從原點(diǎn)出發(fā),沿x軸向右以每秒4個(gè)單位長的速度運(yùn)動(dòng),則點(diǎn)B隨之沿y軸下滑,并帶動(dòng)△ABC在平面內(nèi)滑動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為t秒,當(dāng)B到達(dá)原點(diǎn)時(shí)停止運(yùn)動(dòng).當(dāng)△ABC的邊與坐標(biāo)軸平行時(shí),t=_____________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在□ABCD中,對角線AC、BD相交于點(diǎn)O,AB⊥AC,AB=3cm,BC=5cm.點(diǎn)P從A點(diǎn)出發(fā)沿AD方向勻速運(yùn)動(dòng),速度為1cm/s.連結(jié)PO并延長交BC于點(diǎn)Q,設(shè)運(yùn)動(dòng)時(shí)間為t(0<t<5).
(1)當(dāng)t為何值時(shí),四邊形ABQP是平行四邊形?
(2)設(shè)四邊形OQCD的面積為y(cm2),求y與t之間的函數(shù)關(guān)系式;
(3)是否存在某一時(shí)刻t,使點(diǎn)O在線段AP的垂直平分線上?若存在,求出t的值;若不存在,請說明理由.
備用圖
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com