【題目】已知:一次函數(shù)y=﹣2x+10的圖象與反比例函數(shù)y=(k>0)的圖象相交于A、B兩點(A的B的右側(cè)).
(1)當A(4,2)時,求反比例函數(shù)的解析式:
(2)當A的橫坐標是3,B的橫坐標是2時,直線OA與此反比例函數(shù)圖象的另一支交于另一點C,連接BC交y軸于點D.
①求C點的坐標;
②求D點的坐標;
③求△ABC的面積.
【答案】(1);(2)① C(﹣3,﹣4),B(2,6);②D點的坐標為(2,2);③10.
【解析】(1)依據(jù)反比例函數(shù)y=(k>0)圖象經(jīng)過A(4,2),即可得到反比例函數(shù)的解析式為:=;
(2) ①依據(jù)一次函數(shù)y=-2x+10的圖象經(jīng)過A、B兩點,可得A(3,4),即可得到C(-3,-4);②利用待定系數(shù)法可得直線BC的解析式為y=2x+2,進而得出D點坐標為(2,2);③依據(jù)△ABC的面積= 進行計算.
(1)∵反比例函數(shù)y=(k>0)的圖象經(jīng)過A(4,2),
∴k=4×2=8,
∴反比例函數(shù)的解析式為:y=;
(2)①∵一次函數(shù)y=﹣2x+10的圖象經(jīng)過A、B兩點,A的橫坐標是3,B的橫坐標是2,
∴當x=3時,y=4;當x=2時,y=6,
∴A(3,4),
又∵直線OA與此反比例函數(shù)圖象的另一支交于另一點C,
∴C(﹣3,﹣4),B(2,6);
②設直線BC的解析式為y=ax+b,則
,
解得,
∴直線BC的解析式為y=2x+2,
∴令x=2,則y=2,
∴D點的坐標為(2,2);
③△ABC的面積=S梯形ACGH﹣S△BCG﹣S△ABH
=(2+10)×6﹣×10×5﹣×2×1
=36﹣25﹣1
=10.
科目:初中數(shù)學 來源: 題型:
【題目】材料:思考的同學小斌在解決連比等式問題:“已知正數(shù),,滿足,求的值”時,采用了引入?yún)?shù)法,將連比等式轉(zhuǎn)化為了三個等式,再利用等式的基本性質(zhì)求出參數(shù)的值.進而得出,,之間的關(guān)系,從而解決問題.過程如下:
解;設,則有:
,,,
將以上三個等式相加,得.
,,都為正數(shù),
,即,.
.
仔細閱讀上述材料,解決下面的問題:
(1)若正數(shù),,滿足,求的值;
(2)已知,,,互不相等,求證:.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,一次函數(shù)y=kx+2的圖象與反比例函數(shù)y=的圖象在第一象限的交點為P,PA⊥x軸于點A,PB⊥y軸于點B,函數(shù)y=kx+2的圖象分別交x軸,y軸于點C,D,已知△OCD的面積S△OCD=1,=
(1)求點D的坐標;
(2)求k,m的值;
(3)寫出當x>0時,使一次函數(shù)y=kx+2的值大于反比例函數(shù)y=的值x的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知點A1,A2,…,An均在直線y=x-1上,點B1,B2,…,Bn均在雙曲線y=-上,并且滿足A1B1⊥x軸,B1A2⊥y軸,A2B2⊥x軸,B2A3⊥y軸,…,AnBn⊥x軸,BnAn+1⊥y軸,…,記點An的橫坐標為an(n為正整數(shù)).若a1=-1,則a2018=_______.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(新定義):A、B、C 為數(shù)軸上三點,若點 C 到 A 的距離是點 C 到 B 的距離的 3 倍,我們就稱點
C 是(A,B)的幸運點.
(特例感知):
(1)如圖 1,點 A 表示的數(shù)為﹣1,點 B 表示的數(shù)為 3.表示 2 的點 C 到點 A 的距離是 3, 到點 B 的距離是 1,那么點 C 是(A,B)的幸運點.
①(B,A)的幸運點表示的數(shù)是 ;A.﹣1; B.0; C.1; D.2
②試說明 A 是(C,E)的幸運點.
(2)如圖 2,M、N 為數(shù)軸上兩點,點 M 所表示的數(shù)為﹣2,點 N 所表示的數(shù)為 4,則(M,N)的幸點示的數(shù)為 .
(拓展應用):
(3)如圖 3,A、B 為數(shù)軸上兩點,點 A 所表示的數(shù)為﹣20,點 B 所表示的數(shù)為 40.現(xiàn)有一只電子螞蟻 P 從點 B 出發(fā),以 3 個單位每秒的速度向左運動,到達點 A 停止.當 t 為何值時,P、A 和 B 三個點中恰好有一個點為其余兩點的幸運點?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,拋物線y=﹣x2+2x+3與x軸交于A,B,與y軸交于C,拋物線的頂點為D,直線l過C交x軸于E(4,0).
(1)寫出D的坐標和直線l的解析式;
(2)P(x,y)是線段BD上的動點(不與B,D重合),PF⊥x軸于F,設四邊形OFPC的面積為S,求S與x之間的函數(shù)關(guān)系式,并求S的最大值;
(3)點Q在x軸的正半軸上運動,過Q作y軸的平行線,交直線l于M,交拋物線于N,連接CN,將△CMN沿CN翻轉(zhuǎn),M的對應點為M′.在圖2中探究:是否存在點Q,使得M′恰好落在y軸上?若存在,請求出Q的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】2017年全球超級計算機500強名單公布,中國超級計算機“神威·太湖之光”和“天河二號”攜手奪得前兩名.已知“神威·太湖之光”的浮點運算速度是“天河二號”的2.74倍.這兩種超級計算機分別進行100億億次浮點運算,“神威·太湖之光”的運算時間比“天河二號”少18.75秒,求這兩種超級計算機的浮點運算速度.設“天河二號”的浮點運算速度為億億次/秒,依題意,可列方程為___________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知數(shù)軸上,點O為原點,點A表示的數(shù)為10,動點B、C在數(shù)軸上移動,且總保持BC=3(點C在點B右側(cè)),設點B表示的數(shù)為m.
(1)如圖1,若B為OA中點,則AC= ,點C表示的數(shù)是 ;
(2)若B、C都在線段OA上,且AC=2OB,求此時m的值;
(3)當線段BC沿射線AO方向移動時,若存在AC﹣OB=AB,求滿足條件的m值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com