分析 (1)利用半徑OA=OC可得∠COB=2∠A,然后利用∠COB=2∠PCB即可證得結(jié)論,再根據(jù)圓周角定理,易得∠PCB+∠OCB=90°,即OC⊥CP;故PC是⊙O的切線;
(2)連接MA,MB,由圓周角定理可得∠ACM=∠BAM,進(jìn)而可得△AMC∽△NMA,故AM2=MC•MN;等量代換可得MN•MC=BM2=AM2,代入數(shù)據(jù)即可得到結(jié)論.
解答 (1)證明:∵OA=OC,
∴∠A=∠ACO.
∴∠COB=2∠ACO.
又∵∠COB=2∠PCB,
∴∠ACO=∠PCB.
∵AB是⊙O的直徑,
∴∠ACO+∠OCB=90°.
∴∠PCB+∠OCB=90°,即OC⊥CP.
∵OC是⊙O的半徑,
∴PC是⊙O的切線.
(2)解:連接MA、MB.(如圖)
∵點(diǎn)M是弧AB的中點(diǎn),
∴$\widehat{AM}$=$\widehat{BM}$,
∴∠ACM=∠BAM.
∵∠AMC=∠AMN,
∴△AMC∽△NMA.
∴$\frac{AM}{NM}=\frac{CM}{AM}$.
∴AM2=MC•MN.
∵M(jìn)C•MN=36,
∴AM=6,
∴BM=AM=6.
點(diǎn)評(píng) 此題主要考查了圓的切線的判定及圓周角定理的運(yùn)用和相似三角形的判定和性質(zhì)的應(yīng)用,是一道綜合性的題目,難度中等偏上.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com