18.已知,AB是⊙O的直徑,點(diǎn)C在⊙O上,過點(diǎn)C的直線與AB的延長線交于點(diǎn)P.
(1)如圖①,若∠COB=2∠PCB,求證:直線PC是⊙O的切線;
(2)如圖②,若點(diǎn)M是AB的中點(diǎn),CM交AB于點(diǎn)N,MN•MC=36,求BM的值.

分析 (1)利用半徑OA=OC可得∠COB=2∠A,然后利用∠COB=2∠PCB即可證得結(jié)論,再根據(jù)圓周角定理,易得∠PCB+∠OCB=90°,即OC⊥CP;故PC是⊙O的切線;
(2)連接MA,MB,由圓周角定理可得∠ACM=∠BAM,進(jìn)而可得△AMC∽△NMA,故AM2=MC•MN;等量代換可得MN•MC=BM2=AM2,代入數(shù)據(jù)即可得到結(jié)論.

解答 (1)證明:∵OA=OC,
∴∠A=∠ACO.
∴∠COB=2∠ACO.
又∵∠COB=2∠PCB,
∴∠ACO=∠PCB.
∵AB是⊙O的直徑,
∴∠ACO+∠OCB=90°.
∴∠PCB+∠OCB=90°,即OC⊥CP.
∵OC是⊙O的半徑,
∴PC是⊙O的切線.

(2)解:連接MA、MB.(如圖)
∵點(diǎn)M是弧AB的中點(diǎn),
∴$\widehat{AM}$=$\widehat{BM}$,
∴∠ACM=∠BAM.
∵∠AMC=∠AMN,
∴△AMC∽△NMA.
∴$\frac{AM}{NM}=\frac{CM}{AM}$.
∴AM2=MC•MN.
∵M(jìn)C•MN=36,
∴AM=6,
∴BM=AM=6.

點(diǎn)評(píng) 此題主要考查了圓的切線的判定及圓周角定理的運(yùn)用和相似三角形的判定和性質(zhì)的應(yīng)用,是一道綜合性的題目,難度中等偏上.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:填空題

20.圓周率π≈3.1415926…,用四舍五入法把π精確到千分位,得到的近似值是3.142.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

9.如圖,A(-4,$\frac{1}{2}$)、B(-1,2)是反比例函數(shù)y=$\frac{a}{x}$與一次函數(shù)y=kx+b的圖象在第二象限內(nèi)的兩個(gè)交點(diǎn),AM⊥x軸于M,BN⊥y軸于N,
(1)求一次函數(shù)的解析式及a的值;
(2)P是線段AB上一點(diǎn),連接PM、PN,若△PAM和△PBN的面積相等,求△OPM的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

6.一輛汽車從甲地開往乙地,如果車速提高20%,可比預(yù)定時(shí)間提前1小時(shí)到達(dá);如果以原速行駛200千米后.再將車速提高25%.則可提前48分鐘到達(dá).那么,甲、乙兩地相距多少千米?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

13.如圖①,小華家陽臺(tái)上放置了一個(gè)有6級(jí)踏板的人字梯,如圖②是人字梯的側(cè)面示意圖,梯梁AB與CD相交于點(diǎn)C,現(xiàn)將人字梯完全穩(wěn)固張開,B,D兩點(diǎn)立于水平地面,從下至上,HK是第1級(jí),EF是第6級(jí),每級(jí)踏板均與水平地面平行,相鄰兩級(jí)踏板間的距離相等,最上面的踏板EF恰好橫于AB,CD之間,經(jīng)測量:AB=2m,CD=1.75m,EF=0.2m,AC=CE=EG=HB=CF=0.25m.
(1)求人字梯完全穩(wěn)固張開時(shí),梯子下端B,D間的距離;
(2)求梯梁AB與最上面踏板EF的夾角∠CEF的度數(shù);
(3)小華家天花板距離地面3m,小華靜止站立時(shí)伸直手臂摸到的最大高度為2m,那么,小華要摸到天花板,至少要站在人字梯的第幾級(jí)踏板上?(參考數(shù)據(jù):sin66.4°≈0.92,cos66.4°≈0.4,tan23.6°≈0.44)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

3.問題背景:在△ABC中,AB、BC、AC三邊的長分別為$\sqrt{5}$、$\sqrt{10}$、$\sqrt{13}$,求這個(gè)三角形的面積.佳佳同學(xué)在解答這道題時(shí),先建立一個(gè)正方形網(wǎng)格(每個(gè)小正方形的邊長為1),再在網(wǎng)格中畫出格點(diǎn)△ABC(即△ABC三個(gè)頂點(diǎn)都在小正方形的頂點(diǎn)處).如圖①所示,這樣不需求△ABC的高,而借用網(wǎng)格就能計(jì)算出它的面積.
(1)請(qǐng)你將△ABC的面積直接填寫在橫線上$\frac{7}{2}$;
(2)在圖②中畫△DEF,使DE、EF、DF三邊的長分別為$\sqrt{2}$、$\sqrt{8}$、$\sqrt{10}$,并判斷這個(gè)三角形的形狀,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:填空題

10.如圖,已知∠APB=30°,OP=3cm,⊙O的半徑為1cm,若圓心O沿著BP的方向在直線BP上移動(dòng).
(Ⅰ)當(dāng)圓心O移動(dòng)的距離為1cm時(shí),則⊙O與直線PA的位置關(guān)系是相切.
(Ⅱ)若圓心O的移動(dòng)距離是d,當(dāng)⊙O與直線PA相交時(shí),則d的取值范圍是1cm<d<5cm.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

7.計(jì)算下列各式
(1)計(jì)算:-(-3)2-[3+0.4x×(-l$\frac{1}{2}$)]÷(-2);
(2)先化簡再求值,5a2+3b2+2(a2-b2)-(5a2-3b2),其中a=-1,b=$\frac{1}{2}$.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

8.(1)解方程:$\frac{5}{{x}^{2}-9}$+$\frac{x-2}{x+3}$=1
(2)先化簡:$\frac{2m}{m+1}$-$\frac{2m-4}{{m}^{2}-1}$÷$\frac{m-2}{{m}^{2}-2m+1}$,然后從0,1,2中選一個(gè)恰當(dāng)?shù)臄?shù)求值.

查看答案和解析>>

同步練習(xí)冊(cè)答案