【題目】九年三班的小雨同學(xué)想了解本校九年級(jí)學(xué)生對(duì)哪門課程感興趣,隨機(jī)抽取了部分九年級(jí)學(xué)生進(jìn)行調(diào)查(每名學(xué)生必只能選擇一門課程).將獲得的數(shù)據(jù)整理繪制如下兩幅不完整的統(tǒng)計(jì)圖.
據(jù)統(tǒng)計(jì)圖提供的信息,解答下列問題:
(1)在這次調(diào)查中一共抽取了 名學(xué)生,m的值是 .
(2)請(qǐng)根據(jù)據(jù)以上信息直在答題卡上補(bǔ)全條形統(tǒng)計(jì)圖;
(3)扇形統(tǒng)計(jì)圖中,“數(shù)學(xué)”所對(duì)應(yīng)的圓心角度數(shù)是 度;
(4)若該校九年級(jí)共有1000名學(xué)生,根據(jù)抽樣調(diào)查的結(jié)果,請(qǐng)你估計(jì)該校九年級(jí)學(xué)生中有多少名學(xué)生對(duì)數(shù)學(xué)感興趣.
【答案】(1)50,18;(2)補(bǔ)全的條形統(tǒng)計(jì)圖見解析;(3)108;(4)該校九年級(jí)學(xué)生中有300名學(xué)生對(duì)數(shù)學(xué)感興趣.
【解析】(1)根據(jù)統(tǒng)計(jì)圖化學(xué)對(duì)應(yīng)的數(shù)據(jù)和百分比可以求得這次調(diào)查的學(xué)生數(shù),進(jìn)而求得m的值;
(2)根據(jù)(1)中的結(jié)果和條形統(tǒng)計(jì)圖中的數(shù)據(jù)可以求得選擇數(shù)學(xué)的人數(shù),從而可以將條形統(tǒng)計(jì)圖補(bǔ)充完整;
(3)根據(jù)統(tǒng)計(jì)圖中的數(shù)據(jù)可以求得“數(shù)學(xué)”所對(duì)應(yīng)的圓心角度數(shù);
(4)根據(jù)統(tǒng)計(jì)圖中的數(shù)據(jù),可以求得該校九年級(jí)學(xué)生中有多少名學(xué)生對(duì)數(shù)學(xué)感興趣.
(1)在這次調(diào)查中一共抽取了:10÷20%=50(名)學(xué)生,
m%=9÷50×100%=18%,
故答案為:50,18;
(2)選擇數(shù)學(xué)的有;50﹣9﹣5﹣8﹣10﹣3=15(名),
補(bǔ)全的條形統(tǒng)計(jì)圖如圖所示;
(3)扇形統(tǒng)計(jì)圖中,“數(shù)學(xué)”所對(duì)應(yīng)的圓心角度數(shù)是:360°×=108°,
故答案為:108;
(4)1000×=300(名),
答:該校九年級(jí)學(xué)生中有300名學(xué)生對(duì)數(shù)學(xué)感興趣.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一次函數(shù)y1=ax+b(a≠0)的圖象與反比例函數(shù)y2=(k為常數(shù),k≠0)的圖象交于A、B兩點(diǎn),過點(diǎn)A作AC⊥x軸,垂足為C,連接OA,已知OC=2,tan∠AOC=,B(m,﹣2)
(1)求一次函數(shù)和反比例函數(shù)的解析式.
(2)結(jié)合圖象直接寫出:當(dāng)y1>y2時(shí),x的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知△ABC中,AB=AC.
(1)如圖1,在△ADE中,若AD=AE,且∠DAE=∠BAC,求證:CD=BE;
(2)如圖2,在△ADE中,若∠DAE=∠BAC=60°,且CD垂直平分AE,AD=6,CD=8,求BD的長
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABE、△ADC和△ABC分別是關(guān)于AB,AC邊所在直線的軸對(duì)稱圖形,若∠1:∠2:∠3=7:2:1,則∠α的度數(shù)為( ).
A.126°B.110°C.108°D.90°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知A(﹣2,0),B(4,0),拋物線y=ax2+bx﹣1過A、B兩點(diǎn),并與過A點(diǎn)的直線y=﹣x﹣1交于點(diǎn)C.
(1)求拋物線解析式及對(duì)稱軸;
(2)在拋物線的對(duì)稱軸上是否存在一點(diǎn)P,使四邊形ACPO的周長最。咳舸嬖,求出點(diǎn)P的坐標(biāo),若不存在,請(qǐng)說明理由;
(3)點(diǎn)M為y軸右側(cè)拋物線上一點(diǎn),過點(diǎn)M作直線AC的垂線,垂足為N.問:是否存在這樣的點(diǎn)N,使以點(diǎn)M、N、C為頂點(diǎn)的三角形與△AOC相似,若存在,求出點(diǎn)N的坐標(biāo),若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:△ABC是等腰三角形,CA=CB,0°<∠ACB≤90°.點(diǎn)M在邊AC上,點(diǎn)N在邊BC上(點(diǎn)M、點(diǎn)N不與所在線段端點(diǎn)重合),BN=AM,連接AN,BM,射線AG∥BC,延長BM交射線AG于點(diǎn)D,點(diǎn)E在直線AN上,且AE=DE.
(1)如圖,當(dāng)∠ACB=90°時(shí)
①求證:△BCM≌△ACN;
②求∠BDE的度數(shù);
(2)當(dāng)∠ACB=α,其它多件不變時(shí),∠BDE的度數(shù)是 (用含α的代數(shù)式表示)
(3)若△ABC是等邊三角形,AB=3,點(diǎn)N是BC邊上的三等分點(diǎn),直線ED與直線BC交于點(diǎn)F,請(qǐng)直接寫出線段CF的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校八年級(jí)甲、乙兩班各有學(xué)生50人,為了了解這兩個(gè)班學(xué)生身體素質(zhì)情況,進(jìn)行了抽樣調(diào)查,過程如下,請(qǐng)補(bǔ)充完整.
(1)收集數(shù)據(jù)
從甲、乙兩個(gè)班各隨機(jī)抽取10名學(xué)生進(jìn)行身體素質(zhì)測(cè)試,測(cè)試成績(百分制)如下:
甲班65 75 75 80 60 50 75 90 85 65
乙班90 55 80 70 55 70 95 80 65 70
(2)整理描述數(shù)據(jù)
按如下分?jǐn)?shù)段整理、描述這兩組樣本數(shù)據(jù):
在表中:m= ,n= .
(3)分析數(shù)據(jù)
①兩組樣本數(shù)據(jù)的平均數(shù)、中位數(shù)、眾數(shù)如表所示:
在表中:x= ,y= .
②若規(guī)定測(cè)試成績?cè)?/span>80分(含80分)以上的敘述身體素質(zhì)為優(yōu)秀,請(qǐng)估計(jì)乙班50名學(xué)生中身體素質(zhì)為優(yōu)秀的學(xué)生有 人.
③現(xiàn)從甲班指定的2名學(xué)生(1男1女),乙班指定的3名學(xué)生(2男1女)中分別抽取1名學(xué)生去參加上級(jí)部門組織的身體素質(zhì)測(cè)試,用樹狀圖和列表法求抽到的2名同學(xué)是1男1女的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】張老師元旦節(jié)期間到武商眾圓商場(chǎng)購買一臺(tái)某品牌筆記本電腦,恰逢商場(chǎng)正推出“迎元旦”促銷打折活動(dòng),具體優(yōu)惠情況如表:
購物總金額(原價(jià)) | 折扣 |
不超過5000元的部分 | 九折 |
超過5000元且不超過10000元的部分 | 八折 |
超過10000元且不超過20000元的部分 | 七折 |
…… | …… |
例如:若購買的商品原價(jià)為15000元,實(shí)際付款金額為:
5000×90%+(10000﹣5000)×80%+(15000﹣10000)×70%=12000元.
(1)若這種品牌電腦的原價(jià)為8000元/臺(tái),請(qǐng)求出張老師實(shí)際付款金額;
(2)已知張老師購買一臺(tái)該品牌電腦實(shí)際付費(fèi)5700元.
①求該品牌電腦的原價(jià)是多少元/臺(tái)?
②若售出這臺(tái)電腦商場(chǎng)仍可獲利14%,求這種品牌電腦的進(jìn)價(jià)為多少元/臺(tái)?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)觀察推理:如圖1,△ABC中,∠ACB=90°,AC=BC,直線l過點(diǎn)C,點(diǎn)A、B在直線l同側(cè),BD⊥l,AE⊥l,垂足分別為D、E.
求證:△AEC≌△CDB;
(2)類比探究:如圖2,Rt△ABC中,∠ACB=90°,AC=6,將斜邊AB繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)90°至AB,連接B,C,求△AB,C的面積.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com