【題目】(10分)如圖(1),已知正方形ABCD的對(duì)角線AC、BD相交于點(diǎn)O,E是AC上一點(diǎn),連結(jié)EB,過(guò)點(diǎn)A作AM⊥BE,垂足為M,AM交BD于點(diǎn)F.
(1)試說(shuō)明OE=OF;
(2)如圖(2),若點(diǎn)E在AC的延長(zhǎng)線上,AM⊥BE于點(diǎn)M,交DB的延長(zhǎng)線于點(diǎn)F,其它條件不變,則結(jié)論“OE=OF”還成立嗎?如果成立,請(qǐng)給出說(shuō)明理由;如果不成立,請(qǐng)說(shuō)明理由.
【答案】詳見(jiàn)解析.
【解析】
試題分析:(1)根據(jù)正方形的性質(zhì)對(duì)角線垂直且平分,得到OB=OA,又因?yàn)锳M⊥BE,所以∠MEA+∠MAE=90°=∠AFO+∠MAE,從而求證出Rt△BOE≌Rt△AOF,得到OE=OF.(2)根據(jù)第一步得到的結(jié)果以及正方形的性質(zhì)得到OB=OA,再根據(jù)已知條件求證出Rt△BOE≌Rt△AOF,得到OE=OF.
試題解析:(1)證明:∵四邊形ABCD是正方形.
∴∠BOE=∠AOF=90°,OB=OA.
又∵AM⊥BE,
∴∠MEA+∠MAE=90°=∠AFO+∠MAE,
∴∠MEA=∠AFO.
∴Rt△BOE≌Rt△AOF.
∴OE=OF.
解:OE=OF成立.
證明:∵四邊形ABCD是正方形,
∴∠BOE=∠AOF=90°,OB=OA.
又∵AM⊥BE,
∴∠F+∠MBF=90°,
∠E+∠OBE=90°,
又∵∠MBF=∠OBE,
∴∠F=∠E.
∴Rt△BOE≌Rt△AOF.
∴OE=OF.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在數(shù)軸上點(diǎn)A表示數(shù)a,點(diǎn)B表示數(shù)b,AB表示A點(diǎn)和B點(diǎn)之間的距離,且a,b滿足|a+2|+(b+3a)2=0.
(1)求A,B兩點(diǎn)之間的距離;
(2)若在線段AB上存在一點(diǎn)C,且AC=2BC,求C點(diǎn)表示的數(shù);
(3)若在原點(diǎn)O處放一個(gè)擋板,一小球甲從點(diǎn)A處以1個(gè)單位/秒的速度向左運(yùn)動(dòng),同時(shí),另一個(gè)小球乙從點(diǎn)B處以2個(gè)單位/秒的速度也向左運(yùn)動(dòng),在碰到擋板后(忽略小球的大小,可看做一個(gè)點(diǎn))以原來(lái)的速度向相反的方向運(yùn)動(dòng).
設(shè)運(yùn)動(dòng)時(shí)間為t秒.
①甲球到原點(diǎn)的距離為_____,乙球到原點(diǎn)的距離為_________;(用含t的代數(shù)式表示)
②求甲乙兩小球到原點(diǎn)距離相等時(shí)經(jīng)歷的時(shí)間.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】當(dāng)前正值草莓銷售季節(jié),小李用2000元在安塞區(qū)草莓基地購(gòu)進(jìn)草莓若干進(jìn)行銷售,由于銷售狀況良好,他又拿出6000元資金購(gòu)進(jìn)該種草莓,但這次的進(jìn)貨價(jià)比第一次的進(jìn)貨價(jià)提高了20%,購(gòu)進(jìn)草莓?dāng)?shù)量比第一次的2倍還多20千克。求該種草莓第一次進(jìn)價(jià)是每千克多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】2013年是一個(gè)讓人記憶猶新的年份,霧霾天氣持續(xù)籠罩我國(guó)大部分地區(qū),口罩市場(chǎng)出現(xiàn)熱銷,某旗艦網(wǎng)店用8000元購(gòu)進(jìn)甲、乙兩種型號(hào)的口罩,銷售完后共獲利2800元,進(jìn)價(jià)和售價(jià)如下表:
品名 價(jià)格 | 甲型口罩 | 乙型口罩 |
進(jìn)價(jià)(元/袋) | 20 | 25 |
售價(jià)(元/袋) | 26 | 35 |
(1)求該網(wǎng)店購(gòu)進(jìn)甲、乙兩種型號(hào)口罩各多少袋?
(2)該網(wǎng)店第二次以原價(jià)購(gòu)進(jìn)甲、乙兩種型號(hào)口罩,購(gòu)進(jìn)乙種型號(hào)口罩袋數(shù)不變,而購(gòu)進(jìn)甲種型號(hào)口罩袋數(shù)是第一次的2倍.甲種口罩按原售價(jià)出售,而乙種口罩讓利銷售.若兩種型號(hào)的口罩都售完,要使第二次銷售活動(dòng)獲利不少于3680元,乙種型號(hào)的口罩最低售價(jià)為每袋多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,以△ABC的BC邊上一點(diǎn)O為圓心,經(jīng)過(guò)A,C兩點(diǎn)且與BC邊交于點(diǎn)E,點(diǎn)D為CE的下半圓弧的中點(diǎn),連接AD交線段EO于點(diǎn)F,若AB=BF.
(1)求證:AB是⊙O的切線;
(2)若CF=4,DF= ,求⊙O的半徑r及sinB.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四邊形ABCD是平行四邊形,DE平分∠ADC交AB于點(diǎn)E,BF平分∠ABC,交CD于點(diǎn)F.
(1)、求證:DE=BF;(2)、連接EF,寫(xiě)出圖中所有的全等三角形.(不要求證明)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,O是直線AC上一點(diǎn),OB是一條射線,OD平分∠AOB,OE在∠BOC內(nèi)部,∠BOE=∠EOC,∠DOE=70°,求∠EOC的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】市射擊隊(duì)為從甲、乙兩名運(yùn)動(dòng)員中選拔一人參加省比賽,對(duì)他們進(jìn)行了六次測(cè)試,測(cè)試成績(jī)?nèi)绫?/span>:
選手 | 選拔成績(jī)/環(huán) | 中位數(shù) | 平均數(shù) | |||||
甲 | 10 | 9 | 8 | 8 | 10 | 9 | ||
乙 | 10 | 10 | 8 | 10 | 7 | 9 |
(1)把表中所空各項(xiàng)數(shù)據(jù)填寫(xiě)完整;
(2)分別計(jì)算甲、乙六次測(cè)試成績(jī)的方差;
(3)根據(jù)(1),(2)計(jì)算的結(jié)果,你認(rèn)為推薦誰(shuí)參加省比賽更合適?請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC和△DCE均是等腰三角形,CA=CB,CD=CE,∠BCA=∠DCE.
(1)求證:BD=AE;
(2)若∠BAC=70°,求∠BPE的度數(shù).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com