【題目】綜合與探究:
(1)操作發(fā)現(xiàn):如圖1,在中,為銳角,為射線上一動點,連接,以為直角邊且在的上方作等腰直角三角形.若,.當點在線段上時(與點不重合),你能發(fā)現(xiàn)與的數(shù)量關系和位置關系嗎?請直接寫出你發(fā)現(xiàn)的結論.
(2)類比與猜想:當點在線段的延長線上時,其余條件不變,(1)中的結論是否仍然成立?請在圖2中畫出相應圖形并說明理由.
(3)深入探究:如圖3,若,,,點在線段上運動,請寫出與的位置關系并證明.
【答案】(1),.(2)成立,證明見解析;(3).證明見解析
【解析】
(1)根據(jù)同角的余角相等求出∠CAF=∠BAD,然后利用“邊角邊”證明△ACF和△ABD全等,
(2)先求出∠CAF=∠BAD,然后與(1)的思路相同求解即可;
(3)過點A作AE⊥AC交BC于E,可得△ACE是等腰直角三角形,根據(jù)等腰直角三角形的性質可得AC=AE,∠AED=45°,再根據(jù)同角的余角相等求出∠CAF=∠EAD,然后利用“邊角邊”證明△ACF和△AED全等,根據(jù)全等三角形對應角相等可得∠ACF=∠AED,然后求出∠BCF=90°,從而得到CF⊥BD.
解:∵,是等腰直角三角形,
∴,,
∴.
在和中,
,,,
∴,
∴,.
∵,,
∴,
∴,
∴.
(2)成立.
證明:如圖2,
∵,
∴,
即.
在和中,
,,,
∴,
∴,.
∵,,
∴,
∴,
∴.
(3).
證明:如圖3,過點作交于.
∵,
∴是等腰直角三角形,
∴,.
∵,,
∴.
在和中,,,,
∴,
∴,
∴,
∴.
科目:初中數(shù)學 來源: 題型:
【題目】某公司根據(jù)市場計劃調整投資策略,對,兩種產(chǎn)品進行市場調查,收集數(shù)據(jù)如表:
項目 產(chǎn)品 | 年固定成本 (單位:萬元) | 每件成本 (單位:萬元) | 每件產(chǎn)品銷售價 (萬元) | 每年最多可生產(chǎn)的件數(shù) |
其中是待定常數(shù),其值是由生產(chǎn)的材料的市場價格決定的,變化范圍是,銷售產(chǎn)品時需繳納萬元的關稅,其中為生產(chǎn)產(chǎn)品的件數(shù),假定所有產(chǎn)品都能在當年售出,設生產(chǎn),兩種產(chǎn)品的年利潤分別為、(萬元),寫出、與之間的函數(shù)關系式,注明其自變量的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】國家實行一系列“三農(nóng)”優(yōu)惠政策后,農(nóng)民收入大幅度增加.某鄉(xiāng)所轄村莊去年的年人均收入(單位:元)情況如下表:
年人均收入 | 3 500 | 3 700 | 3 800 | 3 900 | 4 500 |
村莊個數(shù) | 1 | 1 | 3 | 3 | 1 |
該鄉(xiāng)去年各村莊年人均收入的中位數(shù)是( )
A.3 700元B.3 800元C.3 850元D.3 900元
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】山西皮影戲又稱“影戲”或“影子戲”,屬于傳統(tǒng)民間藝術,皮影是一種以獸皮或紙板做成的人物剪影,在制作人物剪影中,給出下面4個條件:①;②;③;④.
(1)在上述四個條件中,選三個條件作為題設,另一個作為結論,其中真命題有哪幾個?(用序號表示即可)
(2)請選擇(1)中的一個命題證明其正確性.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】綜合與實踐:
我們知道“兩邊及其中一邊的對角分別對應相等的兩個三角形不一定全等”.但是,樂樂發(fā)現(xiàn):當這兩個三角形都是銳角三角形時,它們會全等.
(1)請你用所學知識判斷樂樂說法的正確性.
如圖,已知、均為銳角三角形,且,,.
求證:.
(2)除樂樂的發(fā)現(xiàn)之外,當這兩個三角形都是______時,它們也會全等.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,邊長為的正方形的頂點、在一個半徑為的圓上,頂點、在圓內,將正方形沿圓的內壁逆時針方向作無滑動的滾動.當點第一次落在圓上時,點運動的路徑長為________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知一次函數(shù)y=kx﹣3的圖象經(jīng)過點A,且函數(shù)值y隨x的增大而增大,則點A的坐標不可能是( 。
A.(﹣2,﹣4)B.(﹣1,2)C.(5,1)D.(﹣1,﹣4)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AC與BD相交于點O,∠DAB=∠CBA,添加下列哪一個條件后,仍不能使△ADB≌△CBA的是( 。
A.AD=BCB.∠ABD=∠BACC.OA=OBD.AC=BD
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com