【題目】如圖,在平面直角坐標系中,矩形OABC的頂點A、C的坐標分別為(6,0)、(0,4),點P是線段BC上的動點,當OPA是等腰三角形時,則P點的坐標是_____

【答案】(3,4)或(,4)或(6﹣,4)

【解析】

由矩形的性質(zhì)得出BC=OA=6,AB=OC=4,∠B=∠OCB=90°,分三種情況:PO=PA時;AP=AO=6時;OP=OA=6時;分別求出PC的長,即可得出結(jié)果.

∵四邊形OABC是矩形,


BC=OA=6,AB=OC=4,B=OCB=90°,

分三種情況:如圖所示:

①當PO=PA時,POA的垂直平分線上,PBC的中點,PC=3,

P的坐標為(3,4);

②當AP=AO=6時,BP=,

PC=6-2,

P(6-2,4);

③當OP=OA=6時,PC=,

P(2,4).

綜上所述:點P的坐標為(3,4)或(2,4)或(6-2,4).

故答案為:(3,4)或(2,4)或(6-2,4).

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,ABC的三個頂點坐標分別為A(-2,1),B(-1,4),C(-3,2).

(1)以原點O為位似中心,相似比為12,在y軸的左側(cè),畫出ABC放大后的圖形A1B1C1,并直接寫出C1點的坐標;

(2)若點D(a,b)在線段AB上,請直接寫出經(jīng)過(1)的變化后點D的對應(yīng)點D1的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】司機小李某天下午營運全是在東西走向的大道上行駛,如果規(guī)定向東行駛為正,向西行駛為負,這天下午行車里程如下:(單位:千米)

,,,,,,

(1)被送到目的地時,小李在出發(fā)地的什么位置?

(2若每千米的營運額為8元,則這天下午的營運額為多少元?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】反比例函數(shù)y= 與一次函數(shù)y=kx﹣k+2在同一直角坐標系中的圖象可能是(
A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】“國慶節(jié)大酬賓”,某商場設(shè)計的促銷活動如下:在一個不透明的箱子里放有3個質(zhì)地相同的小球,并在球上分別標有“5元”、“10元”和“15元”的字樣,規(guī)定:在本商場同一日內(nèi),顧客每消費滿300元,就可以在箱子里先后摸出兩個球(第一次摸出后不放回).商場根據(jù)兩個小球所標金額和返還相等價格的購物券,購物券可以在本商場消費,某顧客剛好消費300元.
(1)該顧客最多可得到元購物券;
(2)請你用畫樹狀圖和列表的方法,求出該顧客所得購物券的金額不低于25元的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,有一塊不規(guī)則的四邊形地皮ABCO,各個頂點的坐標分別為A(2,6)B(5,4)C(7,0),O(0,0)(圖上一個單位長度表示10),現(xiàn)在想對這塊地皮進行規(guī)劃,需要確定它的面積.

(1)求這個四邊形的面積;

(2)如果把四邊形ABCD的各個頂點的縱坐標保持不變,橫坐標加2,所得到的四邊形面積是多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】(閱讀)數(shù)軸上點A、B表示的數(shù)分別是a、b,若a>b,則AB=a﹣b.

例如,若數(shù)軸上點A、B表示的兩個數(shù)分別為﹣2000+18,

AB=18﹣(﹣2000)=18+2000=2018

(應(yīng)用)若數(shù)軸上點A、B表示的兩個數(shù)分別為x和﹣1,且x>﹣1,則AB=   (用含x的代數(shù)式表示);

(拓展)如圖,數(shù)軸上點A表示的數(shù)為﹣2a,點B表示的數(shù)為﹣a,點C表示的數(shù)為﹣2,且AB=BC.

(1)a的值;

(2)BC為邊作等邊三角形BCD,并將共向右滾動1周得到新的等邊三角形BCD,依次繼續(xù)滾動…….若滾動第n周后,等邊三角形BCD的頂點C表示的數(shù)是2014,求n的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】一名足球守門員練習折返跑,從球門線出發(fā),向前記作正數(shù),返回記作負數(shù),他的記錄如下:(單位:米)+5,-3,+10,-8,-6,+12,-10

(1)守門員最后是否回到了球門線的位置?

(2)在練習過程中,守門員離開球門最遠距離是多少米?

(3)守門員全部練習結(jié)束后,他共跑了多少米?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】閱讀材料,在平面直角坐標系中,已知x軸上兩點A(x1,0),B(x2,0)的距離記作AB=|x1﹣x2|;若A,B是平面上任意兩點,我們可以通過構(gòu)造直角三角形來求AB間的距離,如圖,A,B分別向x軸、y軸作垂線AM1、AN1BM2、BN2,垂足分別是M1、N1、M2、N2,直線AN1BM2于點Q,在RtABQ中,AQ=|x1﹣x2|,BQ=|y1﹣y2|,AB2=AQ2+BQ2=|x1﹣x2|+|y1﹣y2|2=(x1﹣x2)2+(y1﹣y2)2,由此得到平面直角坐標系內(nèi)任意兩點A(x1,y1),B(x2,y2)間的距離公式為:

(1)AB=

(2)直接應(yīng)用平面內(nèi)兩點間距離公式計算點A(1,﹣3),B(﹣2,1)之間的距離為 ;

(3)根據(jù)閱讀材料并利用平面內(nèi)兩點間的距離公式,求代數(shù)式的最小值.

查看答案和解析>>

同步練習冊答案