【題目】在平面直角坐標(biāo)系中,二次函數(shù)y=ax2+bx+2的圖象與x軸交于A(﹣3,0),B(1,0)兩點(diǎn),與y軸交于點(diǎn)C,
(1)求這個(gè)二次函數(shù)的關(guān)系解析式;
(2)點(diǎn)M為拋物線上一動(dòng)點(diǎn),在x軸上是否存在點(diǎn)Q,使以A、C、M、Q為頂點(diǎn)的四邊形是平行四邊形?若存在,直接寫出點(diǎn)Q的坐標(biāo);若不存在,說(shuō)明理由.
【答案】(1)y=﹣x2﹣x+2;(2)存在,Q(2,0)或(2﹣,0)或(﹣1,0)
【解析】
(1)拋物線的表達(dá)式為:y=a(x+3)(x﹣1)=a(x2+2x﹣3),故﹣3a=2,解得:a=﹣,即可求解;
(2)分AC是邊、AC是對(duì)角線兩種情況,即可求解.
(1)拋物線的表達(dá)式為:y=a(x+3)(x﹣1)=a(x2+2x﹣3),
故﹣3a=2,解得:a=﹣,
故拋物線的表達(dá)式為:y=﹣x2﹣x+2;
(2)設(shè)點(diǎn)M(m,n),n=﹣m2﹣m+2;點(diǎn)Q(0,s),而點(diǎn)A(﹣3,0)、點(diǎn)C(0,2);
①當(dāng)AC是邊時(shí),
點(diǎn)A向右平移3個(gè)單位、向上平移2個(gè)單位得到C,
同理點(diǎn)M(Q)右平移3個(gè)單位、向上平移2個(gè)單位得到點(diǎn)Q(M),
即m±3=s,n±2=n,
解得:s=2;
②當(dāng)AC是對(duì)角線時(shí),
由中點(diǎn)公式得:m+s=﹣3,n=2,
解得:s=﹣1,
綜上點(diǎn)Q(2,0)或(2﹣,0)或(﹣1,0).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在半徑為5的扇形AOB中,∠AOB=90°,點(diǎn)C是弧AB上的一個(gè)動(dòng)點(diǎn)(不與點(diǎn)A、B重合)OD⊥BC,OE⊥AC,垂足分別為D、E.
(1)當(dāng)BC=6時(shí),求線段OD的長(zhǎng);
(2)在△DOE中是否存在長(zhǎng)度保持不變的邊?如果存在,請(qǐng)指出并求其長(zhǎng)度;如果不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】問(wèn)題背景:如圖1,在正方形ABCD的內(nèi)部,作∠DAE=∠ABF=∠BCG=∠CDH,根據(jù)三角形全等的條件,易得△DAE≌△ABF≌△BCG≌△CDH,從而得四邊形EFGH是正方形.
類比探究:如圖2,在正△ABC的內(nèi)部,作∠1=∠2=∠3,AD,BE,CF兩兩相交于D,E,F三點(diǎn)(D,E,F三點(diǎn)不重合).
(1)△ABD,△BCE,△CAF是否全等?如果是,請(qǐng)選擇其中一對(duì)進(jìn)行證明;
(2)△DEF是否為正三角形?請(qǐng)說(shuō)明理由;
(3)如圖3,進(jìn)一步探究發(fā)現(xiàn),△ABD的三邊存在一定的等量關(guān)系,設(shè)BD=a,AD=b,AB=c,請(qǐng)?zhí)剿?/span>a,b,c滿足的等量關(guān)系.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】二次函數(shù)y=x2﹣6x+m滿足以下條件:當(dāng)﹣2<x<﹣1時(shí),它的圖象位于x軸的下方;當(dāng)8<x<9時(shí),它的圖象位于x軸的上方,則m的值為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,菱形ABCD的邊AB=8,∠B=60°,P是AB上一點(diǎn),BP=3,Q是CD邊上一動(dòng)點(diǎn),將梯形APQD沿直線PQ折疊,A的對(duì)應(yīng)點(diǎn)為A′,當(dāng)CA′的長(zhǎng)度最小時(shí),CQ的長(zhǎng)為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,菱形ABCD與等邊△AEF的邊長(zhǎng)相等,且E、F分別在BC、CD,則∠BAD的度數(shù)是( )
A.80° B.90° C.100° D.120°
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】太陽(yáng)能光伏建筑是現(xiàn)代綠色環(huán)保建筑之一,老張準(zhǔn)備把自家屋頂改建成光伏瓦面,改建前屋頂截面△ABC如圖2所示,BC=10米,∠ABC=∠ACB=36°,改建后頂點(diǎn)D在BA的延長(zhǎng)線上,且∠BDC=90°,求改建后南屋面邊沿增加部分AD的長(zhǎng).(結(jié)果精確到0.1米)
(參考數(shù)據(jù):sin18°≈0.31,cos18°≈0.95.tan18°≈0.32,sin36°≈0.59.cos36°≈0.81,tan36°≈0.73)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如今很多初中生喜歡購(gòu)頭飲品飲用,既影響身體健康又給家庭增加不必要的開(kāi)銷,為此某班數(shù)學(xué)興趣小組對(duì)本班同學(xué)一天飲用飲品的情況進(jìn)行了調(diào)查,大致可分為四種:A.白開(kāi)水,B.瓶裝礦泉水,C.碳酸飲料,D.非碳酸飲料.根據(jù)統(tǒng)計(jì)結(jié)果繪制如下兩個(gè)統(tǒng)計(jì)圖,根據(jù)統(tǒng)計(jì)圖提供的信息,解答下列問(wèn)題
(1)這個(gè)班級(jí)有多少名同學(xué)?并補(bǔ)全條形統(tǒng)計(jì)圖;
(2)若該班同學(xué)每人每天只飲用一種飲品(每種僅限一瓶,價(jià)格如下表),則該班同學(xué)每天用于飲品的人均花費(fèi)是多少元?
飲品名稱 | 白開(kāi)水 | 瓶裝礦泉水 | 碳酸飲料 | 非碳酸飲料 |
平均價(jià)格(元/瓶) | 0 | 2 | 3 | 4 |
(3)為了養(yǎng)成良好的生活習(xí)慣,班主任決定在飲用白開(kāi)水的5名班委干部(其中有兩位班長(zhǎng)記為A,B,其余三位記為C,D,E)中隨機(jī)抽取2名班委干部作良好習(xí)慣監(jiān)督員,請(qǐng)用列表法或畫樹狀圖的方法求出恰好抽到2名班長(zhǎng)的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某公司研發(fā)了一款成本為50元的新型玩具,投放市場(chǎng)進(jìn)行試銷售.其銷售單價(jià)不低于成本,按照物價(jià)部門規(guī)定,銷售利潤(rùn)率不高于90%,市場(chǎng)調(diào)研發(fā)現(xiàn),在一段時(shí)間內(nèi),每天銷售數(shù)量y(個(gè))與銷售單價(jià)x(元)符合一次函數(shù)關(guān)系,如圖所示:
(1)根據(jù)圖象,直接寫出y與x的函數(shù)關(guān)系式;
(2)該公司要想每天獲得3000元的銷售利潤(rùn),銷售單價(jià)應(yīng)定為多少元
(3)銷售單價(jià)為多少元時(shí),每天獲得的利潤(rùn)最大,最大利潤(rùn)是多少元?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com