【題目】(1)如圖1,∠AOB∠COD都是直角,

∠BOC=60°,則∠BOD=   °,∠AOC=   °;

改變∠BOC的大小,則∠BOD∠AOC相等嗎?為什么?

(2)如圖2,∠AOB=100°,∠COD=110°,若∠AOD=∠BOC+70°,求∠AOC的度數(shù).

【答案】(1)①30;30;②相等,理由詳見(jiàn)解析;(2)∠AOC=30°.

【解析】

(1)①根據(jù)直角定義可得∠COD=∠AOB=90°,再利用角的和差關(guān)系可得答案;

②根據(jù)條件可得∠AOB=∠COD,再用等式的性質(zhì)可得∠AOB-∠COB=∠COD-∠BOC,進(jìn)而可得結(jié)論;

(2)設(shè)∠AOC=x°,則∠BOC=(100-x)°,然后再表示出∠BOD,進(jìn)而可得∠AOD=∠AOB+∠BOD=100°+10°+x°=100°-x°+70°,再解方程即可.

解:(1)①∵∠COD是直角,

∴∠COD=90°,

∵∠BOC=60°,

∴∠BOD=30°,

∵∠AOB是直角,

∴∠AOB=90°,

∵∠BOC=60°,

∴∠AOC=30°,

故答案為:30;30;

相等,

∵∠AOB∠COD都是直角,

∴∠AOB=∠COD,

∴∠AOB﹣∠COB=∠COD﹣∠BOC,

∠BOD=∠AOC;

(2)設(shè)∠AOC=x°,則∠BOC=(100﹣x)°,

∵∠COD=110°,

∴∠BOD=110°﹣(100﹣x)°=x°+10°,

∵∠AOD=∠BOC+70°,

∴∠AOD=∠AOB+∠BOD=100°+10°+x°=100°﹣x°+70°,

解得:x=30,

∴∠AOC=30°.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】新學(xué)期開(kāi)學(xué),某體育用品商店開(kāi)展促銷活動(dòng),有兩種優(yōu)惠方案.

方案一:不購(gòu)買(mǎi)會(huì)員卡時(shí),乒乓球享受8.5折優(yōu)惠,乒乓球拍購(gòu)買(mǎi)5副(含5副)以上才能享受8.5折優(yōu)惠,5副以下必須按標(biāo)價(jià)購(gòu)買(mǎi).

方案二:辦理會(huì)員卡時(shí),全部商品享受八折優(yōu)惠,小健和小康的談話內(nèi)容如下:

會(huì)員卡只限本人使用.

1)求該商店銷售的乒乓球拍每副的標(biāo)價(jià).

2)如果乒乓球每盒10元,小健需購(gòu)買(mǎi)乒乓球拍6副,乒乓球a盒,請(qǐng)回答下列問(wèn)題:

①如果方案一與方案二所付錢(qián)數(shù)一樣多,求a的值;

②直接寫(xiě)出一個(gè)恰當(dāng)?shù)?/span>a值,使方案一比方案二優(yōu)惠;

③直接寫(xiě)出一個(gè)恰當(dāng)?shù)?/span>a值,使方案二比方案一優(yōu)惠.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖已知線段ABCD的公共部分BD=AB= CD線段AB、CD的中點(diǎn)E,F之間距離是10cm,AB,CD的長(zhǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】根據(jù)衢州市統(tǒng)計(jì)局發(fā)布的統(tǒng)計(jì)數(shù)據(jù)顯示,衢州市近5年國(guó)民生產(chǎn)總值數(shù)據(jù)如圖1所示,2016年國(guó)民生產(chǎn)總值中第一產(chǎn)業(yè)、第二產(chǎn)業(yè)、第三產(chǎn)業(yè)所占比例如圖2所示。


請(qǐng)根據(jù)圖中信息,解答下列問(wèn)題:
(1)求2016年第一產(chǎn)業(yè)生產(chǎn)總值(精確到1億元);
(2)2016年比2015年的國(guó)民生產(chǎn)總值增加了百分之幾(精確到1%)?
(3)若要使2018年的國(guó)民生產(chǎn)總值達(dá)到1573億元,求2016年至2018年我市國(guó)民生產(chǎn)總值平均年增長(zhǎng)率(精確到1%)。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,射線OM上有三點(diǎn)A、B、C,滿足OA=20cm,AB=60cm,BC=10cm,點(diǎn)P從點(diǎn)O出發(fā),沿OM方向以1cm/秒的速度勻速運(yùn)動(dòng),點(diǎn)Q從點(diǎn)C出發(fā)在線段CO上向點(diǎn)O勻速運(yùn)動(dòng),兩點(diǎn)同時(shí)出發(fā),當(dāng)點(diǎn)Q運(yùn)動(dòng)到點(diǎn)O時(shí),點(diǎn)P、Q停止運(yùn)動(dòng).

(1)若點(diǎn)Q運(yùn)動(dòng)速度為2cm/秒,經(jīng)過(guò)多長(zhǎng)時(shí)間P、Q兩點(diǎn)相遇?

(2)當(dāng)P在線段AB上且PA=3PB時(shí),點(diǎn)Q運(yùn)動(dòng)到的位置恰好是線段AB的三等分點(diǎn),求點(diǎn)Q的運(yùn)動(dòng)速度;

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】小梅用兩張同樣大小的長(zhǎng)方形硬紙片拼接成一個(gè)面積為900cm2的正方形,如圖所示,按要求完成下列各小題.

(1)求長(zhǎng)方形硬紙片的寬;

(2)小梅想用該長(zhǎng)方形硬紙片制作一個(gè)體積512cm3的正方體的無(wú)蓋筆筒,請(qǐng)你判斷該硬紙片是否夠用?若夠用,求剩余的硬紙片的面積;若不夠用,求缺少的硬紙片的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在Rt△ABC中,∠C=Rt∠,以BC為直徑的⊙O交AB于點(diǎn)D,切線DE交AC于點(diǎn)E.

(1)求證:∠A=∠ADE;
(2)若AD=16,DE=10,求BC的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,已知EF⊥AB,垂足為F,CD⊥AB,垂足為D,∠1=∠2,試判斷∠AGD和∠ACB是否相等,為什么?(將解答過(guò)程補(bǔ)充完整) 解:∠AGD=∠ACB.理由如下:
∵EF⊥AB,CD⊥AB(已知)
∴∠EFB=∠CDB=90° (
(同位角相等,兩直線平行)
∴∠1=∠ECD(
又∵∠1=∠2(已知)
∴∠ECD=( 等量代換)
∴GD∥CB(
∴∠AGD=∠ACB ().

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列敘述中,不正確的個(gè)數(shù)有( ) ①所有的正數(shù)都是整數(shù)②|a|一定是正數(shù) ③無(wú)限小數(shù)一定是無(wú)理數(shù) ④(﹣2)3沒(méi)有平方根 的平方根是±4
A.3個(gè)
B.4個(gè)
C.5個(gè)
D.6個(gè)

查看答案和解析>>

同步練習(xí)冊(cè)答案