【題目】如圖,EF是正方形ABCD的對角線AC上的兩點,AC8,AECF1,則四邊形BEDF的周長是_____

【答案】20

【解析】

連接BDAC于點O,則可證得OEOF,ODOB,可證四邊形BEDF為平行四邊形,且BDEF,可證得四邊形BEDF為菱形;根據(jù)勾股定理計算DE的長,可得結論.

解:如圖,連接BDAC于點O

四邊形ABCD為正方形,

BDAC,ODOBOAOC

AECF2,

OAAEOCCF,即OEOF,

四邊形BEDF為平行四邊形,且BDEF,

四邊形BEDF為菱形,

DEDFBEBF,

ACBD8,OEOF,

由勾股定理得:DE,

四邊形BEDF的周長=4DE4×520

故答案為:20

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】甲、乙兩個服裝廠加工同種型號的防護服,甲廠每天加工的數(shù)量是乙廠每天加工數(shù)量的1.5倍,兩廠各加工600套防護服,甲廠比乙廠要少用4天.

1)求甲、乙兩廠每天各加工多少套防護服?

2)已知甲、乙兩廠加工這種防護服每天的費用分別是150元和120元,疫情期間,某醫(yī)院緊急需要3000套這種防護服,甲廠單獨加工一段時間后另有安排,剩下任務只能由乙單獨完成.如果總加工費不超過6360元,那么甲廠至少要加工多少天?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖Rt△ABC,ACB=90°DCEABC繞著點C順時針方向旋轉得到的,此時B、C、E在同一直線上

1)旋轉角的大小;

2)若AB=10AC=8,BE的長

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,四邊形ABCD內接于⊙O,AB是⊙O的直徑,點P在CA的延長線上,∠CAD=45°.

(1)若AB=4,求弧CD的長.

(2)若弧BC=弧AD,AD=AP. 求證:PD是⊙O的切線.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖A在數(shù)軸上對應的數(shù)為-2.

(1)B在點A右邊距離A4個單位長度,則點B所對應的數(shù)是_____.

(2)(1)的條件下,點A以每秒2個單位長度沿數(shù)軸向左運動,點B以每秒3個單位長度沿數(shù)軸向右運動.現(xiàn)兩點同時運動,當點A運動到-6的點處時,求A、B兩點間的距離.

(3)(2)的條件下,現(xiàn)A點靜止不動,B點以原速沿數(shù)軸向左運動,經過多長時間A、B兩點相距4個單位長度.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知菱形ABCD的對角線相交于點O,延長AB至點E,使BE=AB,連接CE

(1)求證:BD=EC;

(2)若∠E=50°,求∠BAO的大。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,為6×6的正方形網(wǎng)格,每個小正方形的頂點均為格點,在圖中已標出線段AB,A,B均為格點,按要求完成下列問題.

1)以AB為對角線畫一個面積最小的菱形AEBF,且EF為格點;

2)在(1)中該菱形的邊長是   ,面積是   ;

3)以AB為對角線畫一個菱形AEBF,且E,F為格點,則可畫   個菱形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】(問題提出)

學習了三角形全等的判定方法(即“SAS”、“ASA”、“AAS”“SSS”)和直角三角形全等的判定方法(即“HL”)后,我們繼續(xù)對兩個三角形滿足兩邊和其中一邊的對角對應相等的情形進行研究.

(初步思考)

我們不妨將問題用符號語言表示為:在△ABC△DEF中,AC=DF,BC=EF,∠B=∠E,然后,對∠B進行分類,可分為“∠B是直角、鈍角、銳角三種情況進行探究.

(深入探究)

第一種情況:當∠B是直角時,△ABC≌△DEF

1)如圖,在△ABC△DEF,AC=DF,BC=EF,∠B=∠E=90°,根據(jù) ,可以知道Rt△ABC≌Rt△DEF

第二種情況:當∠B是鈍角時,△ABC≌△DEF

2)如圖,在△ABC△DEF,AC=DF,BC=EF,∠B=∠E,且∠B、∠E都是鈍角,求證:△ABC≌△DEF

第三種情況:當∠B是銳角時,△ABC△DEF不一定全等.

3)在△ABC△DEF,AC=DFBC=EF,∠B=∠E,且∠B、∠E都是銳角,請你用尺規(guī)在圖中作出△DEF,使△DEF△ABC不全等.(不寫作法,保留作圖痕跡)

4∠B還要滿足什么條件,就可以使△ABC≌△DEF?請直接寫出結論:在△ABC△DEF中,AC=DF,BC=EF,∠B=∠E,且∠B、∠E都是銳角,若 ,則△ABC≌△DEF

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】隨著智能分揀設備在快遞業(yè)務中的普及,快件分揀效率大幅提高.使用某品牌智能分揀設備,每人每小時分揀的快件量是傳統(tǒng)分揀方式的25倍,經過測試,由5人用此設備分揀8000件快件的時間,比20人用傳統(tǒng)方式分揀同樣數(shù)量的快件節(jié)省4小時.某快遞中轉站平均每天需要分揀10萬件快件,如果使用此智能分揀設備,每天只需要安排多少名工人就可以完成分揀工作(每天工作時間為8小時).

查看答案和解析>>

同步練習冊答案