13.甲、乙兩工程隊(duì)維修同一段路面,甲隊(duì)先清理路面,乙隊(duì)在甲隊(duì)清理后鋪設(shè)路面.乙隊(duì)在中途停工了一段時(shí)間,然后按停工前的工作效率繼續(xù)工作.在整個(gè)工作過程中,甲隊(duì)清理完的路面長(zhǎng)y(米)與時(shí)間x(時(shí))的函數(shù)圖象為線段OA,乙隊(duì)鋪設(shè)完的路面長(zhǎng)y(米)與時(shí)間x(時(shí))的函數(shù)圖象為折線BC-CD-DE,如圖所示,從甲隊(duì)開始工作時(shí)計(jì)時(shí).
(1)求線段DE的函數(shù)關(guān)系式;
(2)當(dāng)甲隊(duì)清理完路面時(shí),乙隊(duì)還有多少米的路面沒有鋪設(shè)完?

分析 (1)先求出乙隊(duì)鋪設(shè)路面的工作效率,計(jì)算出乙隊(duì)完成需要的時(shí)間求出E的坐標(biāo),再由待定系數(shù)法就可以求出結(jié)論.
(2)由(1)的結(jié)論求出甲隊(duì)完成的時(shí)間,把時(shí)間代入乙的解析式就可以求出結(jié)論

解答 解:
(1)設(shè)線段DE所在直線對(duì)應(yīng)的函數(shù)關(guān)系式為y=kx+b.
∵乙隊(duì)按停工前的工作效率為:50÷(5-3)=25,
∴乙隊(duì)剩下的需要的時(shí)間為:(160-50)÷25=$\frac{22}{5}$,
∴E($\frac{109}{10}$,160),
∴$\left\{\begin{array}{l}{50=6.5k+b}\\{160=\frac{109}{10}k+b}\end{array}\right.$,
解得:$\left\{\begin{array}{l}{k=25}\\{b=-112.5}\end{array}\right.$
∴線段DE所在直線對(duì)應(yīng)的函數(shù)關(guān)系式為y=25x-112.5;
(2)由題意,得
甲隊(duì)每小時(shí)清理路面的長(zhǎng)為 100÷5=20,
甲隊(duì)清理完路面的時(shí)間,x=160÷20=8.
把x=8代入y=25x-112.5,得y=25×8-112.5=87.5.
答:當(dāng)甲隊(duì)清理完路面時(shí),乙隊(duì)鋪設(shè)完的路面長(zhǎng)為87.5米.

點(diǎn)評(píng) 本題考查了待定系數(shù)法求一次函數(shù)的解析式的運(yùn)用,工作總量=工作效率×工作時(shí)間的運(yùn)用,解答時(shí)求出函數(shù)的解析式是關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:解答題

3.如圖1,拋物線y=x2-2x+k與x軸交于點(diǎn)A、B兩點(diǎn),與y軸交于點(diǎn)C(0,-3)(圖2,圖3為解答備用圖).
(1)k=-3,點(diǎn)A的坐標(biāo)為(-1,0),點(diǎn)B的坐標(biāo)為(3,0);
(2)設(shè)拋物線y=x2-2x+k的頂點(diǎn)為M,求四邊形ABMC的面積;
(3)在x軸下方的拋物線上是否存在一點(diǎn)D,使四邊形ABDC的面積最大?若存在,請(qǐng)求出點(diǎn)D的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

4.如圖,在邊長(zhǎng)為6的正方形ABCD中,E是邊CD的中點(diǎn),將△ADE沿AE對(duì)折至△AFE,延長(zhǎng)EF交邊BC于點(diǎn)G,連接AG.
(1)求證:△ABG≌△AFG;
(2)求∠EAG的度數(shù);
(3)求BG的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:選擇題

1.若點(diǎn)P(a,a-1)在第四象限,則a的取值范圍是( 。
A.-1<a<0B.0<a<1C.a>1D.a<0

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

8.某校為了增強(qiáng)學(xué)生的安全意識(shí),組織全校學(xué)生參加安全知識(shí)競(jìng)賽,賽后組委會(huì)隨機(jī)抽查部分學(xué)生的成績(jī)進(jìn)行統(tǒng)計(jì)(由高到低分四個(gè)等級(jí)).根據(jù)調(diào)査的數(shù)據(jù)繪制成如下的條形統(tǒng)計(jì)圖和扇形統(tǒng)計(jì)圖.

根據(jù)以上不完整的統(tǒng)計(jì)圖提供的信息,解答下列問題:
(1)組委會(huì)共抽査了80名學(xué)生的安全知識(shí)競(jìng)賽成績(jī),扇形統(tǒng)計(jì)圖中B級(jí)所占的百分比 b=40%扇形統(tǒng)計(jì)圖中.C級(jí)所對(duì)應(yīng)的圓心角的度數(shù)是108度.
2)補(bǔ)全條形統(tǒng)計(jì)圖:
(3)若該校共有800名學(xué)生,請(qǐng)估算該校安全知識(shí)競(jìng)賽成績(jī)獲得A級(jí)的人數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:填空題

18.某中學(xué)籃球隊(duì)12名隊(duì)員的年齡情況如下:
年齡(單位:歲)1415161718
人數(shù)14322
則這個(gè)隊(duì)中,隊(duì)員年齡的平均數(shù)是16歲.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

5.解方程組:
(1)$\left\{\begin{array}{l}{3x+5y=8}\\{2x-y=1}\end{array}\right.$                             
(2)$\left\{\begin{array}{l}{\frac{x}{4}-\frac{y}{3}=\frac{5}{6}}\\{\frac{x}{3}+\frac{y}{2}=\frac{1}{6}}\end{array}\right.$.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

2.根據(jù)要求,解答下列問題.
(1)解下列方程組(直接寫出方程組的解即可):
A.$\left\{\begin{array}{l}{x+2y=3}\\{2x+y=3}\end{array}\right.$   B.$\left\{\begin{array}{l}{3x+2y=10}\\{2x+3y=10}\end{array}\right.$   C.$\left\{\begin{array}{l}{2x-y=7}\\{-x+2y=7}\end{array}\right.$
方程組A的解為$\left\{\begin{array}{l}{x=1}\\{y=1}\end{array}\right.$,方程組B的解為$\left\{\begin{array}{l}{x=2}\\{y=2}\end{array}\right.$,方程組C的解為$\left\{\begin{array}{l}{x=7}\\{y=7}\end{array}\right.$;
(2)以上每個(gè)方程組的解中,x值與y值的大小關(guān)系為x=y;
(3)請(qǐng)你構(gòu)造一個(gè)具有以上外形特征的方程組,并直接寫出它的解.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

3.八年級(jí)的學(xué)生去距學(xué)校10千米的科技館參觀,一部分學(xué)生騎自行車先走,過了25分鐘,其余的學(xué)生乘汽車出發(fā),結(jié)果他們同時(shí)到達(dá),已知每小時(shí)汽車的速度比騎自行車學(xué)生速度的2倍還多10千米,求騎車學(xué)生每小時(shí)行多少千米?

查看答案和解析>>

同步練習(xí)冊(cè)答案