【題目】已知,如圖,在△ ABC中,AD,AE分別是 △ ABC的高和角平分線,若∠B=30°,∠C=50°.
(1)求∠DAE的度數(shù).
(2)試寫(xiě)出 ∠DAE與∠C-∠B有何關(guān)系?(不必證明)
【答案】(1)10°;(2)∠C-∠B=2∠DAE.
【解析】
(1)根據(jù)三角形內(nèi)角和等于180°求出∠BAC的度數(shù),然后根據(jù)AE是角平分線求出∠CAE的度數(shù),在△ACD中,利用直角三角形兩銳角互余求出∠CAD的度數(shù),兩角相減即可求解;
(2)同(1)的思路整理即可.
(1)∵∠B=30°,∠C=50°,
∴∠BAC=180°-30°-50°=100°.
∵AE是∠BAC的平分線,
∴∠BAE=50°.
在Rt△ABD中,∠BAD=90°-∠B=60°,
∴∠DAE=∠BAD-∠BAE=60°-50=10°;
(2)∠C-∠B=2∠DAE.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,推理填空:
(1)∵∠1=_______(已知),
∴AC∥ED(同位角相等,兩直線平行).
(2)∵∠2=______(已知),
∴AB∥FD(內(nèi)錯(cuò)角相等,兩直線平行).
(3)∵∠2+_______=180°(已知),
∴AC∥ED(同旁內(nèi)角互補(bǔ),兩直線平行).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,C為線段AE上一動(dòng)點(diǎn)(不與點(diǎn)A,E重合),在AE同側(cè)分別作等邊△ABC和等邊△CDE,AD與BE交于點(diǎn)O,AD與BC交于點(diǎn)P,BE與CD交于點(diǎn)Q,連接PQ.則下列結(jié)論:①AD=BE;②PQ∥AE;③AP=BQ;④DE=DP.其中正確的是______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為創(chuàng)建“綠色學(xué)校”,綠化校園環(huán)境,我校計(jì)劃分兩次購(gòu)進(jìn)A、B兩種花草,第一次分別購(gòu)進(jìn)A、B兩種花草30棵和15棵,共花費(fèi)675元;第二次分別購(gòu)進(jìn)A、B兩種花草12棵和5棵,共花費(fèi)265元(兩次購(gòu)進(jìn)同種花草價(jià)格相同).
(1)A、B兩種花草每棵的價(jià)格分別是多少元?
(2)若購(gòu)買A、B兩種花草共30棵,且B種花草的數(shù)量不高于A種花草的數(shù)量的2倍,請(qǐng)你給出一種費(fèi)用最省的方案,并求出該方案所需費(fèi)用.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC中,∠A=100°,BI、CI分別平分∠ABC,∠ACB,則∠BIC=________,若BM、CM分別平分∠ABC,∠ACB的外角平分線,則∠M=__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】數(shù)軸上A 點(diǎn)對(duì)應(yīng)的數(shù)為﹣5,B 點(diǎn)在A 點(diǎn)右邊,電子螞蟻甲、乙在B分別以2個(gè)單位/秒、1個(gè)單位/秒的速度向左運(yùn)動(dòng),電子螞蟻丙在A 以3個(gè)單位/秒的速度向右運(yùn)動(dòng).
(1)若電子螞蟻丙經(jīng)過(guò)5秒運(yùn)動(dòng)到C 點(diǎn),求C 點(diǎn)表示的數(shù);
(2)若它們同時(shí)出發(fā),若丙在遇到甲后1秒遇到乙,求B 點(diǎn)表示的數(shù);
(3)在(2)的條件下,設(shè)它們同時(shí)出發(fā)的時(shí)間為t 秒,是否存在t的值,使丙到乙的距離是丙到甲的距離的2倍?若存在,求出t 值;若不存在,說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,二次函數(shù)y=﹣x2+6x﹣9的圖象頂點(diǎn)為A,與y軸交于點(diǎn)B.若在該二次函數(shù)圖形上取一點(diǎn)C,在x軸上取一點(diǎn)D,使得四邊形ABCD為平行四邊形,則D點(diǎn)的坐標(biāo)為( )
A.(﹣9,0)
B.(﹣6,0)
C.(6,0)
D.(9,0)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,∠C=90°,AD平分∠CAB,交CB于點(diǎn)D,過(guò)點(diǎn)D作DE⊥AB,于點(diǎn)E
(1)求證:△ACD≌△AED;
(2)若∠B=30°,CD=1,求BD的長(zhǎng)。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在 中, ,以 的中點(diǎn) 為圓心分別與 , 相切于 , 兩點(diǎn),則 的長(zhǎng)為( )
A.
B.
C.
D.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com