【題目】如圖,在平面直角坐標系中,拋物線y=ax2+bx+cx軸于A、B兩點,交y軸于點C(0,﹣),OA=1,OB=4,直線l過點A,交y軸于點D,交拋物線于點E,且滿足tanOAD=

(1)求拋物線的解析式;

(2)動點P從點B出發(fā),沿x軸正方形以每秒2個單位長度的速度向點A運動,動點Q從點A出發(fā),沿射線AE以每秒1個單位長度的速度向點E運動,當點P運動到點A時,點Q也停止運動,設運動時間為t秒.

①在P、Q的運動過程中,是否存在某一時刻t,使得ADCPQA相似,若存在,求出t的值;若不存在,請說明理由.

②在P、Q的運動過程中,是否存在某一時刻t,使得APQCAQ的面積之和最大?若存在,求出t的值;若不存在,請說明理由.

【答案】(1)拋物線的解析式為y=;(2)①存在t=t=,使得ADCPQA相似;②當t=時,APQCAQ的面積之和最大.

【解析】(1)應用待定系數(shù)法求解析式

(2)①分別用t表示△ADC、△PQA各邊,應用分類討論相似三角形比例式,求t值;

②分別用t表示△APQ與△CAQ的面積之和,討論最大值.

1)∵OA=1,OB=4,

A1,0),B(﹣4,0

設拋物線的解析式為y=ax+4)(x1,

∵點C0,﹣)在拋物線上,

∴﹣

解得a=.

∴拋物線的解析式為y=.

2)存在t,使得ADCPQA相似.

理由:①在RtAOC中,OA=1,OC=

tanACO=,

tanOAD=,

∴∠OAD=ACO,

∵直線l的解析式為y=,

D0,﹣,

∵點C0,﹣,

CD=

AC2=OC2+OA2,得AC=,

AQP中,AP=ABPB=52t,AQ=t

由∠PAQ=ACD,要使ADCPQA相似,

只需,

則有,

解得t1=t2=,

t12.5,t22.5,

∴存在t=t=,使得ADCPQA相似;

②存在t,使得APQCAQ的面積之和最大,

理由:作PFAQ于點F,CNAQN,

APF中,PF=APsinPAF=

AOD中,由AD2=OD2+OA2,得AD=,

ADC中,由SADC= ,

CN=

SAQP+SAQC= ,

∴當t=時,APQCAQ的面積之和最大.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在數(shù)軸上點表示的數(shù)是若動點從原點出發(fā),以個單位/秒的速度向左運動;同時另一動點從點出發(fā),以個單位/秒的速度也向左運動,到達原點后立即以原來的速度返回,向右運動,設運動的時間為()

時,求點到原點的距離;

時,求點到原點的距離;

當點到原點的距離為時,求點到原點的距離.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】東東玩具商店用500元購進一批悠悠球,很受中小學生歡迎,悠悠球很快售完,接著又用900元購進第二批這種悠悠球,所購數(shù)量是第一批數(shù)量的1.5倍,但每套進價多了5元.

(1)求第一批悠悠球每套的進價是多少元;

(2)如果這兩批悠悠球每套售價相同,且全部售完后總利潤不低于25%,那么每套悠悠球的售價至少是多少元?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面角坐標系中,拋物線C1:y=ax2+bx﹣1經(jīng)過點A(﹣2,1)和點B(﹣1,﹣1),拋物線C2:y=2x2+x+1,動直線x=t與拋物線C1交于點N,與拋物線C2交于點M.

(1)求拋物線C1的表達式;

(2)直接用含t的代數(shù)式表示線段MN的長;

(3)當AMN是以MN為直角邊的等腰直角三角形時,求t的值;

(4)在(3)的條件下,設拋物線C1y軸交于點P,點My軸右側的拋物線C2上,連接AMy軸于點k,連接KN,在平面內(nèi)有一點Q,連接KQQN,當KQ=1且∠KNQ=BNP時,請直接寫出點Q的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某蔬菜生產(chǎn)基地的氣溫較低時,用裝有恒溫系統(tǒng)的大棚栽培一種新品種蔬菜.如圖是試驗階段的某天恒溫系統(tǒng)從開啟到關閉后,大棚內(nèi)的溫度y (℃)與時間x(h)之間的函數(shù)關系,其中線段AB、BC表示恒溫系統(tǒng)開啟階段,雙曲線的一部分CD表示恒溫系統(tǒng)關閉階段.

請根據(jù)圖中信息解答下列問題:

(1)求這天的溫度y與時間x(0≤x≤24)的函數(shù)關系式;

(2)求恒溫系統(tǒng)設定的恒定溫度;

(3)若大棚內(nèi)的溫度低于10℃時,蔬菜會受到傷害.問這天內(nèi),恒溫系統(tǒng)最多可以關閉多少小時,才能使蔬菜避免受到傷害?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】有四張相同的卡片,分別寫有數(shù)字2,0,1,5,將它們背面朝上(背面無差別)洗勻后放在桌上.

(1)從中任意抽出一張,抽到卡片上的數(shù)字為負數(shù)的概率;

(2)從中任意抽出兩張,用樹狀圖或表格列出所有可能的結果,并求抽出卡片上的數(shù)字積為正數(shù)的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,ABCD.

1)用直尺和圓規(guī)按要求作圖:作∠ACD的平分線CP,CPAB于點P;作AFCP,垂足為F.

2)判斷直線AF與線段CP的關系,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,正方形ABCD中,已知AB=3,點E,F(xiàn)分別在BC、CD上,且∠BAE=30°,∠DAF=15°,則AEF的面積為_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某經(jīng)銷商銷售一種產(chǎn)品,這種產(chǎn)品的成本價為10元/千克,市場調(diào)查發(fā)現(xiàn),該產(chǎn)品每天的銷售量y(千克)與銷售價x(元/千克,且10≤x≤18)之間的函數(shù)關系如圖所示:

(1)求y(千克)與銷售價z的函數(shù)關系式;

(2)該經(jīng)銷商想要每天獲得150元的銷售利潤,銷售價應定為多少?

查看答案和解析>>

同步練習冊答案