【題目】有一數(shù)值轉(zhuǎn)換器,原理如圖所示,若開始輸入x的值是7,可發(fā)現(xiàn)第1次輸出的結(jié)果是12;第2次輸出的結(jié)果是6;依次繼續(xù)下去……2018次輸出的結(jié)果是_____

【答案】6

【解析】

首先分別求出第3次、第4次、…、第10次輸出的結(jié)果各是多少,判斷出從第二次輸出的結(jié)果開始,每次輸出的結(jié)果分別是6、3、8、4、2、1、6、3、…,每6個數(shù)一個循環(huán);然后用2017-1的值除以6,根據(jù)商和余數(shù)的情況,判斷出2018次輸出的結(jié)果是多少即可.

解:根據(jù)數(shù)值轉(zhuǎn)換器,

1次輸出的結(jié)果是12,第2次輸出的結(jié)果是6,

3次輸出的結(jié)果是3,第4次輸出的結(jié)果是8,

5次輸出的結(jié)果是4,第6次輸出的結(jié)果是2,

7次輸出的結(jié)果是1,第8次輸出的結(jié)果是6,

9次輸出的結(jié)果是3,第10次輸出的結(jié)果是8,

∴從第二次輸出的結(jié)果開始,每次輸出的結(jié)果分別是6、3、8、4、2、1、6、3、…,每6個數(shù)一個循環(huán),

∵(2018-1)÷6=2017÷6=336……1,

∴2018次輸出的結(jié)果是6.

故答案為:6.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)y=x2﹣2x﹣3.
(1)將y=x2﹣2x﹣3化成y=a(x﹣h)2+k的形式;
(2)與y軸的交點坐標(biāo)是 , 與x軸的交點坐標(biāo)是
(3)在坐標(biāo)系中利用描點法畫出此拋物線.

x

y


(4)不等式x2﹣2x﹣3>0的解集是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】拋物線y=ax2+bx+c(a≠0)上部分點的橫坐標(biāo)x,縱坐標(biāo)y的對應(yīng)值如表:

x

﹣2

﹣1

0

1

2

3

y

0

4

6

6

4

0


(1)求這個二次函數(shù)的表達(dá)式;
(2)直接寫出當(dāng)y<0時x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某通訊公司提供了兩種移動電話收費方式:方式1,收月基本費20元,再以每分鐘0.1元的價格按通話時間計費;方式2,收月基本費20元,送80分鐘通話時間,超過80分鐘的部分,以每分鐘0.15元的價格計費.

下列結(jié)論:

①如圖描述的是方式1的收費方法;

②若月通話時間少于240分鐘,選擇方式2省錢;

③若月通訊費為50元,則方式1比方式2的通話時間多;

④若方式1比方式2的通訊費多10元,則方式1比方式2的通話時間多100分鐘.

其中正確的是(

A.只有①② B.只有③④ C.只有①②③ D.①②③④

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我們規(guī)定:在正方形ABCD中,以正方形的一個頂點A為頂點,且過對角頂點C的拋物線,稱為這個正方形的以A為頂點的對角拋物線.
(1)在平面直角坐標(biāo)系xOy中,點在軸正半軸上,點C在y軸正半軸上.
①如圖1,正方形OABC的邊長為2,求以O(shè)為頂點的對角拋物線;
②如圖2,在平面直角坐標(biāo)系xOy中,正方形OABC的邊長為a,其以O(shè)為頂點的對角拋物線的解析式為y= x2 , 求a的值;

(2)如圖3,正方形ABCD的邊長為4,且點A的坐標(biāo)為(3,2),正方形的四條對角拋物線在正方形ABCD內(nèi)分別交于點M、P、N、Q,直接寫出四邊形MPNQ的形狀和四邊形MPNQ的對角線的交點坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,有四張背面相同的紙牌A,B,C,D,其正面分別是紅桃、方塊、黑桃、梅花,其中紅桃、方塊為紅色,黑桃、梅花為黑色.小明將這4張紙牌背面朝上洗勻后,摸出一張,將剩余3張洗勻后再摸出一張.請用畫樹狀圖或列表的方法求摸出的兩張牌均為黑色的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖:△ABC是⊙O的內(nèi)接三角形,∠ACB=45°,∠AOC=150°,過點C作⊙O的切線交AB的延長線于點D.

(1)求證:CD=CB;
(2)如果⊙O的半徑為 ,求AB的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABCD中,BC2AB4,點E,F分別是BCAD的中點.

(1)求證:△ABE≌△CDF;

(2)當(dāng)四邊形AECF為菱形時,求出該菱形的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四邊形ABCD中,∠A+∠B=200°,作∠ADC、BCD的平分線交于點O1稱為第1次操作,作∠O1DC、O1CD的平分線交于點O2稱為第2次操作,作∠O2DC、O2CD的平分線交于點O3稱為第3次操作,,則第5次操作后∠CO5D的度數(shù)是_____

查看答案和解析>>

同步練習(xí)冊答案