【題目】如圖,在大樓AB正前方有一斜坡CD,坡角∠DCE=30°,樓高AB=60米,在斜坡下的點(diǎn)C處測(cè)得樓頂B的仰角為60°,在斜坡上的D處測(cè)得樓頂B的仰角為45°,其中點(diǎn)A,C,E在同一直線上.
(1)求坡底C點(diǎn)到大樓距離AC的值;
(2)求斜坡CD的長(zhǎng)度.
【答案】(1)坡底C點(diǎn)到大樓距離AC的值為20米;(2)斜坡CD的長(zhǎng)度為80-120米.
【解析】(1)在直角三角形ABC中,利用銳角三角函數(shù)定義求出AC的長(zhǎng)即可;
(2)過點(diǎn)D作DF⊥AB于點(diǎn)F,則四邊形AEDF為矩形,得AF=DE,DF=AE.利用DF=AE=AC+CE求解即可.
(1)在直角△ABC中,∠BAC=90°,∠BCA=60°,AB=60米,則AC=(米)
答:坡底C點(diǎn)到大樓距離AC的值是20米.
(2)過點(diǎn)D作DF⊥AB于點(diǎn)F,則四邊形AEDF為矩形,
∴AF=DE,DF=AE.
設(shè)CD=x米,在Rt△CDE中,DE=x米,CE=x米
在Rt△BDF中,∠BDF=45°,
∴BF=DF=AB-AF=60-x(米)
∵DF=AE=AC+CE,
∴20+x=60-x
解得:x=80-120(米)
故斜坡CD的長(zhǎng)度為(80-120)米.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,點(diǎn)E是等邊△ABC的邊BC上一點(diǎn),以AE為邊作等邊△AEF,EF交AC于D.
(1)連接CF,求證:
(2)如圖2,作EH AF交AB于點(diǎn)H.
①求證:;
②若EH=2,ED=4,直接寫出BE的長(zhǎng)為 _________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,∠ABD=∠ABC,補(bǔ)充一個(gè)條件,使得△ABD≌△ABC,則下列選項(xiàng)不符合題意的是( 。
A. ∠D=∠CB. ∠DAB=∠CABC. BD=BCD. AD=AC
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,在平面直角坐標(biāo)系中,A(-1,5)、B(-1,0)、C(-4,3).
(1)直接寫出△ABC 的面積為 ;
(2)在圖形中作出△ABC 關(guān)于y 軸的對(duì)稱圖形△A1B1C1,并直接寫出△A1B1C1的三個(gè)頂點(diǎn)的坐標(biāo):A1( ),B1( ),C1( );
(3)是否存在一點(diǎn) P 到 AC、AB 的距離相等,同時(shí)到點(diǎn) A、點(diǎn) B 的距離也相等.若存在保留作圖痕跡標(biāo)出點(diǎn) P 的位置,并簡(jiǎn)要說明理由;若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在口ABCD中,分別以邊BC,CD作等腰△BCF,△CDE,使BC=BF,CD=DE,∠CBF=∠CDE,連接AF,AE.
(1)求證:△ABF≌△EDA;
(2)延長(zhǎng)AB與CF相交于G,若AF⊥AE,求證BF⊥BC.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知□ABCD中,A(1,3), B(2,-1), C(5,-5)
(1)D的坐標(biāo)為____________.
(2)若經(jīng)過原點(diǎn)的一條直線平分□ABCD的面積,求此直線的解析式
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】將長(zhǎng)為,寬為的長(zhǎng)方形白紙,按圖示方法粘合起來(lái),粘合部分寬為.
(1)根據(jù)圖示,將下表補(bǔ)充完整;
白紙張數(shù) | 1 | 2 | 3 | 4 | 5 | … |
紙條長(zhǎng)度/ | 40 | 110 | 145 | … |
(2)設(shè)張白紙粘合后的總長(zhǎng)度為,求與之間的關(guān)系式;
(3)將若干張白紙按上述方式粘合起來(lái),你認(rèn)為總長(zhǎng)度可能為嗎?為什么?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn)M是正方形ABCD邊CD上一點(diǎn),連接AM,作DE⊥AM于點(diǎn)E,BF⊥AM于點(diǎn)F,連接BE.
(1)求證:AE=BF;
(2)已知AF=2,四邊形ABED的面積為24,求∠EBF的正弦值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】國(guó)家支持大學(xué)生創(chuàng)新辦實(shí)業(yè),提供小額無(wú)息貸款,學(xué)生王亮享受國(guó)家政策貸款36000元用于代理某品牌服裝銷售,已知該店代理的品牌服裝的進(jìn)價(jià)為每件40元,該品牌服裝日銷售量y(件)與銷售價(jià)x(元/件)之間的關(guān)系可用圖中的一條線段(實(shí)線)來(lái)表示.該店應(yīng)支付員工的工資為每人每天82元,每天還應(yīng)支付其它費(fèi)用為106元(不包含貸款).
(1)求日銷售量y(件)與銷售價(jià)x(元/件)之間的函數(shù)關(guān)系式;
(2)若該店暫不考慮償還貸款,當(dāng)某天的銷售價(jià)為48元/件時(shí),當(dāng)天正好收支平衡(銷售額-成本=支出),求該店員工的人數(shù);
(3)若該店只有2名員工,則該店至少需要多少天能還清所有貸款?此時(shí)每件服裝的價(jià)格應(yīng)定為多少元?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com