分析 (1)△CEF是等腰直角三角形;證明△FBC≌△EDC即可得出結(jié)論,注意不要忽略直角;
(2)過E作EN∥AB,證明△FBM≌△ENM可知FM=EM,則AM是直角△AEF斜邊上的中線,要想求AM的長,求斜邊EF的長即可,利用勾股定理求EF;
(3)連接EC和FC,證明四邊形FCHG是平行四邊形,得出FC=GH=3$\sqrt{5}$,利用勾股定理求BF,則就是DE的長.
解答 解:(1)如圖1,△CEF是等腰直角三角形,理由是:
在正方形ABCD中,BC=DC,∠FBC=∠D=90°,
∵BF=DE,
∴△FBC≌△EDC,
∴CF=CE,∠ECD=∠FCB,
∴∠ECF=∠ECB+∠FCB=∠ECB+∠ECD=90°,
∴△CEF是等腰直角三角形;
(2)如圖2,過E作EN∥AB,交BD于N,則EN=ED=2,
∵BN∥AD,
∴∠F=∠MEN,
∵∠BMN=∠EMN,
∴△FBM≌△ENM,
∴EM=FM,
在Rt△EAF中,EF=$\sqrt{{4}^{2}+(6+2)^{2}}$=4$\sqrt{5}$,
∴AM=$\frac{1}{2}$EF=2$\sqrt{5}$;
(3)如圖3,連接EC和FC,
由(1)得∠EFC=45°,
∵∠EMH=45°,
∴∠EFC=∠EMH,
∴GH∥FC,
∵AF∥DC,
∴四邊形FCHG是平行四邊形,
∴FC=GH=3$\sqrt{5}$,
由勾股定理得:BF=$\sqrt{(3\sqrt{5})^{2}-{6}^{2}}$=3,
∴DE=BF=3.
點(diǎn)評 本題是四邊形綜合題,考查了正方形和平行四邊形、等腰直角三角形的判定和性質(zhì),通過作輔助線構(gòu)建全等三角形得出邊相等和角相等,因此本題輔助線的作法是關(guān)鍵;故在幾何證明中,恰當(dāng)?shù)淖鬏o助線可以把四邊形的問題轉(zhuǎn)化為三角形的問題,使問題得以解決.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | 垂線段最短 | B. | 過兩點(diǎn)有且只有一條直線 | ||
C. | 兩點(diǎn)之間線段最短 | D. | 過一點(diǎn)可以做無數(shù)條直線 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2016-2017學(xué)年四川省成都市金堂縣八年級上學(xué)期期末考試數(shù)學(xué)試卷就(解析版) 題型:解答題
2014年1月,國家發(fā)改委出臺指導(dǎo)意見,要求2015年底前,所有城市原則上全面實(shí)行居民階梯水價(jià)制度. 小軍為了解市政府調(diào)整水價(jià)方案的社會(huì)反響,隨機(jī)訪問了自己居住在小區(qū)的部分居民,就“每月每戶的用水量”和“調(diào)價(jià)對用水行為改變”兩個(gè)問題進(jìn)行調(diào)查,并把調(diào)查結(jié)果整理成下面的圖1,圖2.
小軍發(fā)現(xiàn)每月每戶的用水量在5m3-35m3之間,有7戶居民對用水價(jià)格調(diào)價(jià)漲幅抱無所謂,不用考慮用水方式的改變. 根據(jù)小軍繪制的圖表和發(fā)現(xiàn)的信息,完成下列問題:
(1)n =________,小明調(diào)查了_____戶居民,并補(bǔ)全圖1;
(2)每月每戶用水量的中位數(shù)落在______之間,眾數(shù)落在_______之間;
(3)如果小明所在的小區(qū)有1200戶居民,請你估計(jì)“視調(diào)價(jià)漲幅采取相應(yīng)的用水方式改變”的居民戶數(shù)有多少?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com