【題目】如圖,AB∥CD,∠BAC與∠DCA的平分線相交于點G,GE⊥AC于點E,F為AC上的一點,且AF=FC,GH⊥CD于H.下列說法①AG⊥CG;②∠BAG=∠CGE;③S△AFG=S△CFG;④若∠EGH∶∠ECH=2∶7,則∠EGH=40°.其中正確的有________.
【答案】①②③④.
【解析】
靈活利用平行線的性質(zhì)、等角的余角相等、四邊形的內(nèi)角和、三角形內(nèi)角和定理、三角形的面積公式、角平分線的性質(zhì)進行分析.
解:①中,根據(jù)兩條直線平行,同旁內(nèi)角互補,得∠BAC+∠ACD=180°,
再根據(jù)角平分線的概念,得∠GAC+∠GCA=∠BAC+∠ACD=×180°=90°,
再根據(jù)三角形的內(nèi)角和是180°,得AG⊥CG;
②中,根據(jù)等角的余角相等,得∠CGE=∠GAC,故∠BAG=∠CGE;
③中,根據(jù)三角形的面積公式,
∵AF=CF,∴S△AFG=S△CFG;
④中,根據(jù)題意得:在四邊形GECH中,∠EGH+∠ECH=180°.
又∠EGH:∠ECH=2:7,則∠EGH=180°×=40°.
故上述四個都是正確的.
故答案為:①②③④.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,正方形CEFG繞正方形ABCD的頂點C旋轉(zhuǎn),連接AF,點M是AF中點.
(1)當(dāng)點G在BC上時,如圖2,連接BM、MG,求證:BM=MG;
(2)在旋轉(zhuǎn)過程中,當(dāng)點B、G、F三點在同一直線上,若AB=5,CE=3,則MF= ;
(3)在旋轉(zhuǎn)過程中,當(dāng)點G在對角線AC上時,連接DG、MG,請你畫出圖形,探究DG、MG的數(shù)量關(guān)系,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,四邊形 ABCD,∠A=90°,AB=3m,BC=12m,CD=13m,DA=4m.
(1)求證:BD⊥CB;
(2)求四邊形 ABCD 的面積;
(3)如圖 2,以 A 為坐標(biāo)原點,以 AB、AD所在直線為 x軸、y軸建立直角坐標(biāo)系,
點P在y軸上,若 S△PBD=S四邊形ABCD,求 P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】計算:
(1)(﹣3)﹣(﹣2)+(﹣4);
(2)﹣10+14+16﹣8;
(3)(-4)×(-5)-90÷(-15);
(4)﹣23÷×(﹣)2;
(5)(+﹣)×(﹣36);
(6)﹣14﹣×[2﹣(﹣3)2]
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為更有效地開展“線上教學(xué)”工作,某市就學(xué)生參與線上學(xué)習(xí)的工具進行了電子問卷調(diào)查,并將調(diào)查結(jié)果繪制成圖1和圖2所示的統(tǒng)計圖(均不完整).請根據(jù)統(tǒng)計圖中提供的信息,解答下列問題:
(1)本次調(diào)查的總?cè)藬?shù)是 人;
(2)請將條形統(tǒng)計圖補充完整;
(3)在扇形統(tǒng)計圖中表示觀點B的扇形的圓心角度數(shù)為 度;
(4)在扇形統(tǒng)計圖中表示觀點E的百分比是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方形ABCD中,連接BD,點O是BD的中點,若M、N是邊AD上的兩點,連接MO、NO,并分別延長交邊BC于兩點M′、N′,則圖中的全等三角形共有( )
A. 2對 B. 3對 C. 4對 D. 5對
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一次函數(shù)分別交y軸、x 軸于A、B兩點,拋物線過A、B兩點。(1)求這個拋物線的解析式;(2)作垂直x軸的直線x=t,在第一象限交直線AB于M,交這個拋物線于N。求當(dāng)t 取何值時,MN有最大值?最大值是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)閱讀理解:
如圖①,在△ABC中,若AB=10,AC=6,求BC邊上的中線AD的取值范圍.
解決此問題可以用如下方法:延長AD到點E使DE=AD,再連接BE(或?qū)?/span>△ACD繞著點D逆時針旋轉(zhuǎn)180°得到△EBD),把AB、AC,2AD集中在△ABE中,利用三角形三邊的關(guān)系即可判斷.
中線AD的取值范圍是 ;
(2)問題解決:
如圖②,在△ABC中,D是BC邊上的中點,DE⊥DF于點D,DE交AB于點E,DF交AC于點F,連接EF,求證:BE+CF>EF;
(3)問題拓展:
如圖③,在四邊形ABCD中,∠B+∠D=180°,CB=CD,∠BCD=140°,以為頂點作一個70°角,角的兩邊分別交AB,AD于E、F兩點,連接EF,探索線段BE,DF,EF之間的數(shù)量關(guān)系,并加以證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校九年級數(shù)學(xué)興趣小組的同學(xué)進行社會實踐活動時,想利用所學(xué)的解直角三角形的知識測量某塔的高度,他們先在點用高米的測角儀測得塔頂的仰角為,然后沿方向前行m到達點處,在處測得塔頂的仰角為.請根據(jù)他們的測量數(shù)據(jù)求此塔的高.(結(jié)果精確到m,參考數(shù)據(jù): , , )
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com