【題目】如圖,在邊長為6的正方形ABCD中,點P為AB上一動點,連接DB、DP,AE⊥DP于E.
(1)如圖①,若P為AB的中點,則= ; = ;
(2)如圖②,若時,證明:AC=4BF;
(3)如圖③,若P在BA的延長線上,當= 時,.
【答案】(1),;(2)詳見解析;(3).
【解析】
(1)延長AF交BC于M,證△ABM≌△DAP,得BM=AP,再根據(jù)△MBF∽△ADF對應邊成比例列出比例式=,然后再根據(jù)正方形的邊長相等,對角線相等進行轉化即可求解;
(2)先根據(jù)已知條件求出=,然后同(1)的方法作出輔助線即可進行證明;
(3)同前兩小題的思路,延長CB交AF于點M,然后同(1)的求解思路進行求解計算.
(1)延長AF交BC于M,∴∠BAM+∠AMB=90°.
∵AE⊥DP,∴∠BAM+∠DPA=90°,∴∠AMB=∠DPA.
在△ABM和△DAP中,∵,∴△ABM≌△DAP(AAS),∴AP=BM(全等三角形對應邊相等).
∵四邊形ABCD是正方形,∴BC∥AD,∴△MBF∽△ADF,∴=.
∵點P是AB的中點,∴AP=BM=AB=AD,∴==,∴==,即=.
又∵AC=BD,∴=.
故答案為:;
(2)∵=,∴==,即=,方法同(1),延長AF交BC于M,則===,∴==,即=.
∵正方形的對角線AC=BD,∴=,∴AC=4BF;
(3)延長CB交AF于點M,方法同(1)可得:==,∴=,∴=,即=.
∵正方形的對角線AC=BD,∴=.
故答案為:.
科目:初中數(shù)學 來源: 題型:
【題目】已知:正方形ABCD中,AB=4,E為CD邊中點,F為AD邊中點,AE交BD于G,交BF于H,連接DH.
(1)求證:BG=2DG;
(2)求AH:HG:GE的值;
(3)求的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,點在等邊的邊上,,射線于點,點是射線上一動點,點是線段上一動點,當的值最小時,,則為( )
A. 14B. 13C. 12D. 10
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖.在平面直角坐標系內(nèi),△ABC三個頂點的坐標分別為A(1,﹣2),B(4,﹣1),C(3,﹣3)(正方形網(wǎng)格中,每個小正方形的邊長都是1個單位長度).
(1)作出△ABC向左平移5個單位長度,再向下平移3個單位長度得到的△A1B1C1;
(2)以坐標原點O為位似中心,相似比為2,在第二象限內(nèi)將△ABC放大,放大后得到△A2B2C2作出△A2B2C2;
(3)以坐標原點O為旋轉中心,將△ABC逆時針旋轉90°,得到△A3B3C3,作出△A3B3C3,并求線段AC掃過的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在菱形ABCD中,AC與BD相交于點O,AB=4,BD=4,E為AB的中點,點P為線段AC上的動點,則EP+BP的最小值為( 。
A. 4B. 2C. 2D. 8
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為落實“美麗撫順”的工作部署,市政府計劃對城區(qū)道路進行了改造,現(xiàn)安排甲、乙兩個工程隊完成.已知甲隊的工作效率是乙隊工作效率的倍,甲隊改造360米的道路比乙隊改造同樣長的道路少用3天.
(1)甲、乙兩工程隊每天能改造道路的長度分別是多少米?
(2)若甲隊工作一天需付費用7萬元,乙隊工作一天需付費用5萬元,如需改造的道路全長1200米,改造總費用不超過145萬元,至少安排甲隊工作多少天?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,在等腰Rt△ABC中,∠BAC=90°,點E在AC上(且不與點A、C重合).在△ABC的外部作等腰Rt△CED,使∠CED=90°,連接AD,分別以AB,AD為鄰邊作平行四邊形ABFD,連接AF.
(1)求證:△AEF是等腰直角三角形;
(2)如圖2,將△CED繞點C逆時針旋轉,當點E在線段BC上時,連接AE,求證:AF=AE;
(3)如圖3,將△CED繞點C繼續(xù)逆時針旋轉,當平行四邊形ABFD為菱形,且△CED在△ABC的下方時,若AB=2,CE=2,求線段AE的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在矩形ABCD中,AB=10cm,AD=8cm,點P從點A出發(fā)沿AB以2cm/s的速度向點終點B運動,同時點Q從點B出發(fā)沿BC以1cm/s的速度向點終點C運動,它們到達終點后停止運動.
(1)幾秒后,點P、D的距離是點P、Q的距離的2倍;
(2)幾秒后,△DPQ的面積是24cm2.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,O為坐標原點,正比例函數(shù)的圖像與反比例函數(shù)的圖像都經(jīng)過點A(2,m).
(1)求反比例函數(shù)的解析式;
(2)點B在軸的上,且OA=BA,反比例函數(shù)圖像上有一點C,且∠ABC=90°,求點C坐標.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com