【題目】如圖,將一張邊長為8的正方形紙片OABC放在直角坐標系中,使得OAy軸重合,OCx軸重合,點P為正方形AB邊上的一點(不與點A、點B重合).將正方形紙片折疊,使點O落在P處,點C落在G處,PGBCH,折痕為EF.連接OP、OH

初步探究

1)當AP=4

直接寫出點E的坐標    ;

求直線EF的函數(shù)表達式.

深入探究

2)當點P在邊AB上移動時,∠APO與∠OPH的度數(shù)總是相等,請說明理由.

拓展應用

3)當點P在邊AB上移動時,△PBH的周長是否發(fā)生變化?并證明你的結(jié)論.

【答案】1(0,5);;(2)理由見解析;(3)周長=16,不會發(fā)生變化,證明見解析.

【解析】

1設:OEPEa,則AE8a,AP4,在RtAEP中,由勾股定理得:PE2AE2+AP2,即可求解;

證明△AOP≌△FREAAS),則ERAP4,故點F8,1),即可求解;

2)∠EOP=∠EPO,而∠EPH=∠EOC90°,故∠EPH﹣∠EPO=∠EOC﹣∠EOP,即∠POC=∠OPH,又因為ABOC,故∠APO=∠POC,即可求解;

3)證明△AOP≌△QOPAAS)、△OCH≌△OQHSAS),則CHQH,即可求解.

1設:OE=PE=a,則AE=8aAP=4,

Rt△AEP中,由勾股定理得:PE2=AE2+AP2

a2=(8a)2+16,解得:a=5,

故點E(0,5)

故答案為:(0,5)

過點FFRy軸于點R,

折疊后點O落在P處,則點O、P關于直線EF對稱,則OPEF,

∴∠EFR+∠FER=90°,而FER+∠AOP=90°,

∴∠AOP=∠EFR,

OAP=∠FRERF=AO,

∴△AOP≌△FRE(AAS)

ER=AP=4,

OR=EOOR=54=1,故點F(81),

將點E、F的坐標代入一次函數(shù)表達式:y=kx+b

得:,解得:,

故直線EF的表達式為:y=x+5;

2PE=OE,

∴∠EOP=∠EPO

∵∠EPH=∠EOC=90°,

∴∠EPHEPO=∠EOCEOP

POC=∠OPH

ABOC,

∴∠APO=∠POC,

∴∠APO=∠OPH;

3)如圖,過OOQPH,垂足為Q

由(1)知APO=∠OPH,

AOPQOP中,

∴△AOP≌△QOP(AAS),

AP=QP,AO=OQ

AO=OC

OC=OQ

∵∠C=∠OQH=90°,OH=OH

∴△OCH≌△OQH(SAS),

CH=QH,

∴△PHB的周長=PB+BH+PH=AP+PB+BH+HC=AB+CB=16

故答案為:16

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】甲、乙兩同學玩托球賽跑游戲,商定:用球拍托乒乓球從起跑線1起跑,繞過點跑回到起跑線(如圖示),途中乒乓球掉下來時須撿起并回到掉球處繼續(xù)賽跑,結(jié)果:甲同學由于心急,掉了球,浪費了6秒鐘,乙同學則順利跑完;事后,甲同學說:我倆所用的全部時間的和為50,乙同學說撿球過程不算在內(nèi)時,甲的速度是我的1.2根據(jù)圖文信息,求出兩人所用的時間.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,△ABC中,∠ACB90°,AC4,BC3,點PAB邊上一動點

當△PCB是等腰三角形時,求AP的長度.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,等邊三角形的頂點A(11)、B(31),規(guī)定把等邊△ABC“先沿y軸翻折,再向下平移1個單位”為一次變換,如果這樣連續(xù)經(jīng)過2020次變換后,等邊△ABC的頂點C的坐標為____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,AB=AC=2,∠B=36°,點D在線段BC上運動(D不與點B、C重合),連接AD,作∠ADE=36°,DE交線段AC于點E

1)當∠BDA=128°時,∠EDC=    ,∠AED=    

2)線段DC的長度為何值時,△ABD≌△DCE?請說明理由;

3)在點D的運動過程中,△ADE的形狀可以是等腰三角形嗎?若可以,請直接寫出∠BDA的度數(shù);若不可以,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,一架長25米的梯子,斜靠在豎直的墻上,這時梯子底端離墻7米.

(1)此時梯子頂端離地面多少米?

(2)若梯子頂端下滑4米,那么梯子底端將向左滑動多少米?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,拋物線y=ax2+bx+2x軸相交于A(﹣1,0),B(4,0)兩點,與y軸相交于點C.

(1)求拋物線的解析式;

(2)將△ABCAB中點M旋轉(zhuǎn)180°,得到△BAD.

①求點D的坐標;

②判斷四邊形ADBC的形狀,并說明理由;

(3)在該拋物線對稱軸上是否存在點P,使△BMP與△BAD相似?若存在,請求出所有滿足條件的P點的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,拋物線y=ax2+bx+cx軸交于點A(-1,0),頂點坐標(1,n)與y軸的交點在(0,2),(0,3)之間(包含端點),則下列結(jié)論:①3a+b<0;-1≤a≤-;③對于任意實數(shù)m,a+b≥am2+bm總成立;④關于x的方程ax2+bx+c=n-1有兩個不相等的實數(shù)根.其中結(jié)論正確的個數(shù)為( )

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖是一張月歷表,在此月歷表上用一個正方形任意圈出 2×2個數(shù)(如 12,89), 如果圈出的四個數(shù)中的最小數(shù)與最大數(shù)的積為 308,那么這四個數(shù)的和為(

A.68B.72C.74D.76

查看答案和解析>>

同步練習冊答案