【題目】如圖 1,正方形 OABC 的邊 OA 在數(shù)軸上,O 為原點(diǎn),正方形 OABC 的面積為 16.

1)數(shù)軸上點(diǎn) A 表示的數(shù)為 .

2)將正方形 OABC 沿?cái)?shù)軸水平移動(dòng),移動(dòng)后的正方形記為O' A' B' C' ,移動(dòng)后的正方形O' A' B' C ' 與原正方形 OABC 重疊部分的面積記為 S,如圖 2 中,長(zhǎng)方形O ' ABC ' 的面積為 S.當(dāng) S 恰好等于原正方形 OABC 面積的時(shí),數(shù)軸上點(diǎn)A' 示的數(shù)為 .

3)設(shè)點(diǎn) A 的移動(dòng)距離AA' = xD 為線段AA' 的中點(diǎn),點(diǎn) E 在線段OO ' 上,且OE = OO ' ,當(dāng)OD + OE = 5 時(shí),求x的值并寫出此時(shí)點(diǎn) A' 所對(duì)應(yīng)的數(shù).

【答案】14; 2)①;②-2;

【解析】

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知A、B、C三點(diǎn)在同一直線上,AB16cmBC10cm,MN分別是AB、BC的中點(diǎn),則MN等于__________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四邊形ABCD是邊長(zhǎng)為1的正方形,E,FBD所在直線上的兩點(diǎn).若AE=,EAF=135°,則以下結(jié)論正確的是( 。

A. DE=1 B. tanAFO= C. AF= D. 四邊形AFCE的面積為

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,,又的三等分點(diǎn).

1)求證;

2)證明:;

3)若點(diǎn)為線段上一動(dòng)點(diǎn),連接則使線段的長(zhǎng)度為整數(shù)的點(diǎn)的個(gè)數(shù)________.(直接寫答案無(wú)需說(shuō)明理由)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】計(jì)算:

13×(﹣5+(﹣32)÷(﹣4

2

3×(﹣18

4)﹣23÷×(﹣2|2|

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知以RtABC的邊AB為直徑作ABC的外接圓⊙O,B的平分線BEACD,交⊙OE,過(guò)EEFACBA的延長(zhǎng)線于F.

(1)求證:EF是⊙O切線;

(2)若AB=15,EF=10,求AE的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四邊形ABCD,對(duì)角線AC,BD相交于點(diǎn)O,AB=AC=AD,∠DAC=∠ABC

1)求證BD平分∠ABC

2)若∠DAC=45°,OA=1OC的長(zhǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知點(diǎn)在數(shù)軸上對(duì)應(yīng)的數(shù)為,點(diǎn)對(duì)應(yīng)的數(shù)為,且

________,________;并將這兩個(gè)數(shù)在數(shù)軸上所對(duì)應(yīng)的點(diǎn),表示出來(lái);

數(shù)軸上在點(diǎn)右邊有一點(diǎn)兩點(diǎn)的距離和為,若點(diǎn)的數(shù)軸上所對(duì)應(yīng)的數(shù)為,求的值;

若點(diǎn),點(diǎn)同時(shí)沿?cái)?shù)軸向正方向運(yùn)動(dòng),點(diǎn)運(yùn)動(dòng)的速度為單位/秒,點(diǎn)運(yùn)動(dòng)的速度為單位/秒,若,求運(yùn)動(dòng)時(shí)間的值.

(溫馨提示:、之間距離記作,點(diǎn)、在數(shù)軸上對(duì)應(yīng)的數(shù)分別為、,則.)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在數(shù)軸上,點(diǎn)A、B對(duì)應(yīng)的數(shù)分別為ab,且ab滿足|a+4|+b820

1)求A、B所表示的數(shù);

2)若點(diǎn)C在數(shù)軸上對(duì)應(yīng)的數(shù)為x,且x是方程2x+1x8的解.

求線段BC的長(zhǎng);

在數(shù)軸上是否存在點(diǎn)P,使PA+PBBC?若存在,求出點(diǎn)P對(duì)應(yīng)的數(shù);若不存在,說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案