【題目】如圖,長(zhǎng)方形的長(zhǎng)為15,寬為10,高為20,點(diǎn)離點(diǎn)的距離為5,螞蟻如果要沿著長(zhǎng)方形的表面從點(diǎn)爬到點(diǎn),需要爬行的最短距離是( )
A.35B.C.25D.
【答案】C
【解析】
要求長(zhǎng)方體中兩點(diǎn)之間的最短路徑,最直接的作法,就是將長(zhǎng)方體側(cè)面展開(kāi),然后利用兩點(diǎn)之間線段最短解答.
解:只要把長(zhǎng)方體的右側(cè)表面剪開(kāi)與前面這個(gè)側(cè)面所在的平面形成一個(gè)長(zhǎng)方形,如第1個(gè)圖:
∵長(zhǎng)方體的寬為10,高為20,點(diǎn)B離點(diǎn)C的距離是5,
∴BD=CD+BC=10+5=15,AD=20,
在直角三角形ABD中,根據(jù)勾股定理得:
∴AB=,
只要把長(zhǎng)方體的右側(cè)表面剪開(kāi)與上面這個(gè)側(cè)面所在的平面形成一個(gè)長(zhǎng)方形,如第2個(gè)圖:
∵長(zhǎng)方體的寬為10,高為20,點(diǎn)B離點(diǎn)C的距離是5,
∴BD=CD+BC=20+5=25,AD=10;
在直角三角形ABD中,根據(jù)勾股定理得:
∴AB=,
只要把長(zhǎng)方體的上表面剪開(kāi)與后面這個(gè)側(cè)面所在的平面形成一個(gè)長(zhǎng)方形,如第3個(gè)圖:
∵長(zhǎng)方體的寬為10,高為20,點(diǎn)B離點(diǎn)C的距離是5,
∴AC=CD+AD=20+10=30;
在直角三角形ABC中,根據(jù)勾股定理得:
∴AB=,
∵25<<,
∴螞蟻爬行的最短距離是25,
故選:C.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在一個(gè)可以自由轉(zhuǎn)動(dòng)的轉(zhuǎn)盤中,指針位置固定,三個(gè)扇形的面積都相等,且分別標(biāo)有數(shù)字1,2,3.
(1)小明轉(zhuǎn)動(dòng)轉(zhuǎn)盤一次,當(dāng)轉(zhuǎn)盤停止轉(zhuǎn)動(dòng)時(shí),指針?biāo)干刃沃械臄?shù)字是奇數(shù)的概率為________;
(2)小明先轉(zhuǎn)動(dòng)轉(zhuǎn)盤一次,當(dāng)轉(zhuǎn)盤停止轉(zhuǎn)動(dòng)時(shí),記錄下指針?biāo)干刃沃械臄?shù)字;接著再轉(zhuǎn)動(dòng)轉(zhuǎn)盤一次,當(dāng)轉(zhuǎn)盤停止轉(zhuǎn)動(dòng)時(shí),再次記錄下指針?biāo)干刃沃械臄?shù)字,求這兩個(gè)數(shù)字之和是3的倍數(shù)的概率(用畫(huà)樹(shù)狀圖或列表等方法求解)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC為直角三角形,∠C=90°,BC=2cm,∠A=30°,四邊形DEFG為矩形,DE=2cm,EF=6cm,且點(diǎn)C、B、E、F在同一條直線上,點(diǎn)B與點(diǎn)E重合.Rt△ABC以每秒1cm的速度沿矩形DEFG的邊EF向右平移,當(dāng)點(diǎn)C與點(diǎn)F重合時(shí)停止.設(shè)Rt△ABC與矩形DEFG的重疊部分的面積為ycm2,運(yùn)動(dòng)時(shí)間xs.能反映ycm2與xs之間函數(shù)關(guān)系的大致圖象是( 。
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】閱讀下面材料,并解決問(wèn)題:
(1)如圖①等邊△ABC內(nèi)有一點(diǎn)P,若點(diǎn)P到頂點(diǎn)A、B、C的距離分別為3,4,5,求∠APB的度數(shù).
為了解決本題,我們可以將△ABP繞頂點(diǎn)A旋轉(zhuǎn)到△ACP′處,此時(shí)△ACP′≌△ABP,這樣就可以利用旋轉(zhuǎn)變換,將三條線段PA、PB、PC轉(zhuǎn)化到一個(gè)三角形中,從而求出∠APB=__________;
(2)基本運(yùn)用
請(qǐng)你利用第(1)題的解答思想方法,解答下面問(wèn)題:
已知如圖②,△ABC中,∠CAB=90°,AB=AC,E、F為BC上的點(diǎn)且∠EAF=45°,求證:EF2=BE2+FC2;
(3)能力提升
如圖③,在Rt△ABC中,∠C=90°,AC=1,∠ABC=30°,點(diǎn)O為Rt△ABC內(nèi)一點(diǎn),連接AO,BO,CO,且∠AOC=∠COB=∠BOA=120°,求OA+OB+OC的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn)E是∠AOB的平分線上一點(diǎn),EC⊥OA,ED⊥OB,垂足分別為C、D.
求證:(1)∠ECD=∠EDC;
(2)OC=OD;
(3)OE是線段CD的垂直平分線.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,用16張不同的直角三角形紙片拼成一個(gè)海螺的圖形,直角的位置、長(zhǎng)為1的線段均已標(biāo)出,則與這海螺圖形周長(zhǎng)最接近的整數(shù)是________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,正方形A1B1C1O,A2B2C2C1,A3B3C3C2, ……,按如圖的方式放置。點(diǎn)A1,A2,A3,……和點(diǎn)C1,C2,C3……分別在直線y=x +1和x軸上,則點(diǎn)A6的坐標(biāo)是____________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知矩形 ABCD 中,AB=1,BC=,點(diǎn) M 在 AC 上,且 AM=AC,連接并延長(zhǎng) BM 交 AD 于點(diǎn) N.
(1)求證:△ABC∽△AMB;
(2)求 MN 的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AB是⊙O的直徑,DO⊥AB于點(diǎn)O,連接DA交⊙O于點(diǎn)C,過(guò)點(diǎn)C作⊙O的切線交DO于點(diǎn)E,連接BC交DO于點(diǎn)F.
(1)求證:CE=EF;
(2)連接AF并延長(zhǎng),交⊙O于點(diǎn)G.填空:
①當(dāng)∠D的度數(shù)為 時(shí),四邊形ECFG為菱形;
②當(dāng)∠D的度數(shù)為 時(shí),四邊形ECOG為正方形.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com