【題目】下面是“用三角板畫圓的切線”的畫圖過程

如圖1,已知圓上一點A,畫過A點的圓的切線.

畫法:(1)如圖2,將三角板的直角頂點放在圓上任一點C(與點A不重合)處,使其一直角邊經(jīng)過點A,另一條直角邊與圓交于B點,連接AB;

(2)如圖3,將三角板的直角頂點與點A重合,使一條直角邊經(jīng)過點B,畫出另一條直角邊所在的直線AD.

所以直線AD就是過點A的圓的切線.

請回答:該畫圖的依據(jù)是_______________________________________________

【答案】90°的圓周角所對的弦是直徑,經(jīng)過半徑外端并且垂直于這條半徑的直線是圓的切線

【解析】試題分析:利用90°的圓周角所對的弦是直徑可得到AB為直徑,根據(jù)經(jīng)過半徑外端并且垂直于這條半徑的直線是圓的切線可判斷直線AD就是過點A的圓的切線.

故答案為:90°的圓周角所對的弦是直徑,經(jīng)過半徑外端并且垂直于這條半徑的直線是圓的切線.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】計算:

1 27169

27(3)(5)|8|

3

4

5(8)÷(4)(3)3×(-1

6

7

8÷

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,某翼裝飛行員從離水平地面高AC=500mA處出發(fā),沿著俯角為15°的方向,直線滑行1600米到達D點,然后打開降落傘以75°的俯角降落到地面上的B點.求他飛行的水平距離BC(結(jié)果精確到1m).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知,ABC,ACB=90°AC=BCDBC邊上的一點

1以點C為旋轉(zhuǎn)中心,ACD逆時針旋轉(zhuǎn)90°得到BCE,請你畫出旋轉(zhuǎn)后的圖形;

2延長ADBE于點F求證AFBE;

3AC=,BF=1連接CF,CF的長度為______

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點M是正方形ABCDCD上一點,連接AM,作DEAM于點E,作BF⊥AM于點F,連接BE. AF=1,四邊形ABED的面積為6,則BF的長為(

A.2B.3C.D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】有這樣一個問題:探究函數(shù)的性質(zhì)

(1)先從簡單情況開始探究:

① 當函數(shù)為時, 增大而 (填“增大”或“減小”);

② 當函數(shù)為時,它的圖象與直線的交點坐標為 ;

(2)當函數(shù)為時,

下表為其y與x的幾組對應值.

x

0

1

2

3

4

y

1

2

3

7

①如圖,在平面直角坐標系xOy中,描出了上表中各對對應值為坐標的點,請根據(jù)描出的點,畫出該函數(shù)的圖象;

②根據(jù)畫出的函數(shù)圖象,寫出該函數(shù)的一條性質(zhì):

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知12箱蘋果,以每箱10千克為標準,超過10千克的數(shù)記為正數(shù),不足10千克的數(shù)記為負數(shù),稱重記錄如下:

+0.2 ,—0.2,+0. 7,—0.3,—0.4,+0.6,0,—0.1,—0.6,+0.5,—0.2,—0.5。

⑴求12箱蘋果的總重量;

⑵若每箱蘋果的重量標準為100.5(千克),則這12箱有幾箱不合乎標準的?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,長方形ABCD的頂點A、B分別在x軸、y軸上,OA=OB=2,AD=4,將長方形ABCD繞點O順時針旋轉(zhuǎn),每次旋轉(zhuǎn)90°,則第2021次旋轉(zhuǎn)結(jié)束時,點C的坐標為( )

A.(64)B.(4,6)C.(-6,4)D.(-46)

查看答案和解析>>

同步練習冊答案