【題目】如圖,∠1+∠2=180°,∠A=C,DA平分∠BDF

1)求證:AECF

2BC平分∠DBE嗎?為什么?

【答案】1)見詳解;(2BC平分∠DBE,證明見詳解.

【解析】

1)根據(jù)同角的補角相等,證明∠2=DBE,問題得證;

(2)先證明ADBC,進而證明∠C=CBD,再根據(jù)AECF,證明∠CBD=CBE,問題得證.

解:(1)證明:∵∠1+∠2=180°,∠1+∠DBE=180°,

∴∠2=DBE

AECF;

(2)BC平分∠DBE,

證明:∵AECF,

∴∠C+CBA=180°,

∵∠A=C,

∴∠A+CBA=180°,

ADBC

∴∠ADB=CBD,∠FDA=C,

DA平分∠BDF,

∴∠FDA=ADB,

∴∠C=CBD,

AECF,

∴∠C=CBE,

∴∠CBD=CBE,

BC平分∠DBE

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】一個不透明的袋子中裝有若干個除顏色外均相同的小球,小明每次從袋子中摸出一個球,記錄下顏色,然后放回,重復這樣的試驗1000次,記錄結果如下:

實驗次數(shù)n

200

300

400

500

600

700

800

1000

摸到紅球次數(shù)m

151

221

289

358

429

497

568

701

摸到紅球頻率

0.75

0.74

0.72

0.72

0.72

0.71

a

b

1)表格中a=________,b=_________;

2)估計從袋子中摸出一個球恰好是紅球的概率約為________;(精確到0.1

3)如果袋子中有14個紅球,那么袋子中除了紅球,還有多少個其他顏色的球?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】(本題滿分8分)

為營造書香家庭,周末小亮和姐姐一起從家出發(fā)去圖書館借書,走了6分鐘忘帶借書證,小亮立即騎路邊共享單車返回家中取借書證,姐姐以原來的速度繼續(xù)向前行走,小亮取到借書證后騎單車原路原速前往圖書館,小亮追上姐姐后用單車帶著姐姐一起前往圖書館.已知單車的速度是步行速度的3倍,如圖是小亮和姐姐距家的路程y(米)與出發(fā)的時間x(分鐘)的函數(shù)圖象,根據(jù)圖象解答下列問題:

小亮在家停留了 分鐘.

求小亮騎單車從家出發(fā)去圖書館時距家的路程y(米)與出發(fā)時間x(分鐘)之間的函數(shù)關系式.

若小亮和姐姐到圖書館的實際時間為m分鐘,原計劃步行到達圖書館的時間為n分鐘,則n-m= 分鐘.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在△ABC中,AB=AC,點D是射線CB上的一動點(不與點B、C重合),以AD為一邊在AD的右側作△ADE,使AD=AE,∠DAE=∠BAC,連接CE

(1)如圖1,當點D在線段CB上,且∠BAC=90°時,那么∠DCE= 度;

(2)設∠BAC= ,∠DCE=

① 如圖2,當點D在線段CB上,∠BAC≠90°時,請你探究之間的數(shù)量關系,并證明你的結論;

② 如圖3,當點D在線段CB的延長線上,∠BAC≠90°時,請將圖3補充完整,并直接寫出此時之間的數(shù)量關系(不需證明).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】說理填空:如圖,點EDC的中點,EC=EB,∠CDA=120°DF//BE,且DF平分∠CDA,求證:△BEC為等邊三角形.

解: 因為DF平分∠CDA(已知)

所以∠FDC=________

因為∠CDA=120°(已知)

所以∠FDC=______°

因為DF//BE(已知)

所以∠FDC=_________.(____________________________________

所以∠BEC = 60°,又因為EC=EB,(已知)

所以△BCE為等邊三角形.(_____________________________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】射擊隊為從甲、乙兩名運動員中選拔一人參加比賽,對他們進行了六次測試,測試成績如下表(單位:環(huán)):

第一次

第二次

第三次

第四次

第五次

第六次

平均成績

中位數(shù)

10

8

9

8

10

9

9

10

7

10

10

9

8

9.5


(1)完成表中填空①;②
(2)請計算甲六次測試成績的方差;
(3)若乙六次測試成績方差為 ,你認為推薦誰參加比賽更合適,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在四邊形ABCD中,AC、BD相交于點F,點E在BD上,且
(1)求證:∠BAE=∠CAD;
(2)求證:△ABE∽△ACD.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,折疊邊長為a的正方形ABCD,使點C落在邊AB上的點M處(不與點A,B重合),點D落在點N處,折痕EF分別與邊BC、AD交于點E、F,MN與邊AD交于點G.證明:

(1)△AGM∽△BME;
(2)若M為AB中點,則
(3)△AGM的周長為2a.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,ABC中邊AB的垂直平分線分別交BC,AB于點D,E,AE=3cm,ADC的周長為9cm,ABC的周長是(

A. 10cm B. 12cm C. 15cm D. 17cm

查看答案和解析>>

同步練習冊答案