【題目】如圖四邊形ABCD,AD∥BC,AB⊥BC,AD=1,AB=2,BC=3,P為AB邊上的一動點,以PD,PC為邊作平行四邊形PCQD,則對角線PQ的長的最小值是( 。
A.3B.4C.5D.6
【答案】B
【解析】
過點Q作QH⊥BC,交BC的延長線于H,如圖,根據(jù)AAS易證得Rt△ADP≌Rt△HCQ,可得AD=HC,進而可求得BH的長,則可得當(dāng)PQ⊥AB時,PQ的長最小,即為BH的長.
解:過點Q作QH⊥BC,交BC的延長線于H,如圖,
∵AD∥BC,
∴∠ADC=∠DCH,即∠ADP+∠PDC=∠DCQ+∠QCH,
∵PD∥CQ,
∴∠PDC=∠DCQ,
∴∠ADP=∠QCH,
又∵PD=CQ,∠A=∠CHQ=90°,
∴Rt△ADP≌Rt△HCQ(AAS),
∴AD=HC,
∵AD=1,BC=3,
∴BH=4,
∴當(dāng)PQ⊥AB時,PQ的長最小,即為4.
故選:B.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將△ABC沿BC方向平移2cm得到△DEF,若△ABC的周長為16cm,則四辺形ABFD的周長為( )
A. 16cmB. 18cmC. 20cmD. 22cm
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】讀一讀:式子“1+2+3+4+5+……+100”表示從1開始的100個連續(xù)自然數(shù)的和.由于上述式子比較長,書寫也不方便,為了簡便起見,我們可將“1+2+3+4+5+……+100”表示為,這里“”是求和符號.例如:“1+3+5+7+9+……+99”(即從1開始的100以內(nèi)的連續(xù)奇數(shù)的和)可表示為;又如“13+23+33+43+53+63+73+83+93+103”可表示為.同學(xué)們,通過對以上材料的閱讀,請解答下列問題:
①2+4+6+8+10+……+100(即從2開始的100以內(nèi)的連續(xù)偶數(shù)的和)用求和符號可表示為 ;
②計算:= (填寫最后的計算結(jié)果).
③求:的值.(寫出必要的過程)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某市射擊隊甲、乙兩名隊員在相同的條件下各射耙10次,每次射耙的成績情況如圖所示:
(1)請將右上表補充完整:(參考公式:方差)
(2)請從下列三個不同的角度對這次測試結(jié)果進行①從平均數(shù)和方差相結(jié)合看,__________的成績好些;②從平均數(shù)和中位數(shù)相結(jié)合看,___________的成績好些;
(3)若其他隊選手最好成績在9環(huán)左右,現(xiàn)要選一人參賽,你認(rèn)為選誰參加,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在矩形紙片ABCD中,AB=3cm,AD=5cm,折疊紙片使B點落在邊AD上的E處,折痕為PQ,過點E作EF∥AB交PQ于F,連接BF.
(1)求證:四邊形BFEP為菱形;
(2)當(dāng)點E在AD邊上移動時,折痕的端點P、Q也隨之移動;
①當(dāng)點Q與點C重合時(如圖2),求菱形BFEP的邊長;
②若限定P、Q分別在邊BA、BC上移動,求出點E在邊AD上移動的最大距離.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】古希臘著名的畢達哥拉斯學(xué)派把1,3,6,10…這樣的數(shù)稱為“三角形數(shù)”,而把1,4,9,16…這樣的數(shù)稱為“正方形數(shù)”.從圖中可以發(fā)現(xiàn),任何一個大于1的“正方形數(shù)”都可以看作兩個相鄰“三角形數(shù)”之和.下列等式中,符合這一規(guī)律的是( )
A. 36=15+21 B. 25=9+16 C. 13=3+10 D. 49=18+31
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商品的進價為每件40元,當(dāng)售價為每件60元時,每星期可賣出300件;現(xiàn)需降價處理,且經(jīng)市場調(diào)查:每降價1元,每星期可多賣出20件.現(xiàn)在要使每星期利潤為6125元,設(shè)每件商品應(yīng)降價x元,則可列方程為( )
A. (20+x)(300+20x)=6125 B. (20-x)(300-20x)=6125
C. (20-x)(300+20x)=6125 D. (20+x)(300-20x)=6125
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】觀察算式:; ;;,...請根據(jù)你發(fā)現(xiàn)的規(guī)律填空:
(1)_________.
(2)用含n 的等式表示上面的規(guī)律:__________.
(3)用找到的規(guī)律解決下面的問題:計算:.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,菱形OABC的一邊OA在x軸的負(fù)半軸上,O是坐標(biāo)原點,tan∠AOC=,反比例函數(shù)y=的圖象經(jīng)過點C,與AB交于點D,若△COD的面積為20,則k的值等于_____.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com