【題目】(1)如圖①,在△ABC中,已知∠ABC、∠ACB的平分線相交于點(diǎn)O,過(guò)點(diǎn)O作EF∥BC交AB、AC于E、F.請(qǐng)寫出圖中的等腰三角形,并找出EF與BE、CF間的關(guān)系;

(2) 如圖②中∠ABC的平分線與三角形ABC的外角∠ACG的平分線CO交于O,過(guò)O點(diǎn)作OE∥BC交AB于E,交AC于F.圖中有等腰三角形嗎?如果有,請(qǐng)寫出來(lái).EF與BE、CF間的關(guān)系如何?請(qǐng)說(shuō)明理由.

【答案】(1)等腰三角形有△EBO和△CFO,EF=BE+CF;(2)有等腰三角形,它們分別是△EBO和△CFO.EF=BE-CF.理由見解析.

【解析】

(1)由EFBC可得∠EOB=OBC,由OB平分∠ABC可得∠EBO=OBC,由此得到∠EOB=EBO,然后即可證明BEO是等腰三角形,同理可證:CFO是等腰三角形;根據(jù)等腰三角形的性質(zhì)求得OE=EB,OF=FC,從而證得EF=BE+FC;

(2)根據(jù)角平分線的定義以及平行線的性質(zhì)進(jìn)行角之間的等量代換,根據(jù)等邊對(duì)等角,發(fā)現(xiàn)兩個(gè)等腰三角形:BOECOF,即可得出所求的結(jié)論.

(1)等腰三角形有EBOCFO,EF=BE+CF.

(2)有等腰三角形,它們分別是EBOCFO.

EF=BE-CF.

理由:BO平分∠ABC,

∴∠ABO=OBC.

OEBC,

∴∠EOB=OBC,

∴∠EOB=EBO,

BE=EO.

同理,CF=OF,

EO=EF+OF,

EF=EO-OF=BE-CF.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,從熱氣球C處測(cè)得地面A,B兩點(diǎn)的俯角分別為30°,45°,此時(shí)熱氣球C處所在位置到地面上點(diǎn)A的距離為400米.求地面上A,B兩點(diǎn)間的距離.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知二次函數(shù)y=﹣ x2+bx+c的圖象與x軸的正半軸相交于點(diǎn)A(2,0)和點(diǎn)B、與y軸相交于點(diǎn)C,它的頂點(diǎn)為M、對(duì)稱軸與x軸相交于點(diǎn)N.
(1)用b的代數(shù)式表示頂點(diǎn)M的坐標(biāo);
(2)當(dāng)tan∠MAN=2時(shí),求此二次函數(shù)的解析式及∠ACB的正切值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如果三角形的一個(gè)外角等于和它相鄰的內(nèi)角的4倍,等于與它不相鄰的一個(gè)內(nèi)角的2倍,則此三角形各內(nèi)角的度數(shù)是_____________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】定義:有一個(gè)內(nèi)角為90°,且對(duì)角線相等的四邊形稱為準(zhǔn)矩形.

(1)①如圖1,準(zhǔn)矩形ABCD中,∠ABC=90°,若AB=2,BC=3,則BD=
②如圖2,直角坐標(biāo)系中,A(0,3),B(5,0),若整點(diǎn)P使得四邊形AOBP是準(zhǔn)矩形,則點(diǎn)P的坐標(biāo)是;(整點(diǎn)指橫坐標(biāo)、縱坐標(biāo)都為整數(shù)的點(diǎn))
(2)如圖3,正方形ABCD中,點(diǎn)E、F分別是邊AD、AB上的點(diǎn),且CF⊥BE,求證:四邊形BCEF是準(zhǔn)矩形;
(3)已知,準(zhǔn)矩形ABCD中,∠ABC=90°,∠BAC=60°,AB=2,當(dāng)△ADC為等腰三角形時(shí),請(qǐng)直接寫出這個(gè)準(zhǔn)矩形的面積是

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】數(shù)學(xué)課上,李老師出示了如下框中的題目.

在等邊三角形ABC中,點(diǎn)E在AB上,點(diǎn)D在CB的延長(zhǎng)線上,且ED=EC,如圖.試確定線段AE與DB的大小關(guān)系,并說(shuō)明理由.

小敏與同桌小聰討論后,進(jìn)行了如下解答:

(1)特殊情況,探索結(jié)論

當(dāng)點(diǎn)E為AB的中點(diǎn)時(shí),如圖1,確定線段AE與的DB大小關(guān)系.請(qǐng)你直接寫出結(jié)論:

AE DB(填“>”,“<”或“=”).

圖1 2

(2)特例啟發(fā),解答題目

解:題目中,AE與DB的大小關(guān)系是:AE DB(填“>”,“<”或“=”).

理由如下:如圖2,過(guò)點(diǎn)E作EFBC,交AC于點(diǎn)F.

(請(qǐng)你完成以下解答過(guò)程)

(3)拓展結(jié)論,設(shè)計(jì)新題

在等邊三角形ABC中,點(diǎn)E在直線AB上,點(diǎn)D在直線BC上,且ED=EC.若ABC的邊長(zhǎng)為1,AE=2,求CD的長(zhǎng)(請(qǐng)你直接寫出結(jié)果).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】計(jì)算:( ﹣2)0+( ﹣1+4cos30°﹣| |

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】ABC中,AB,C的對(duì)邊分別記為,,,由下列條件不能判定ABC為直角三角形的是( ).

AA+B=C

BA∶∠B∶∠C =123

C

D=346

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】Rt△ABC中,∠ACB=90°,∠A=30°,BD△ABC的角平分線,DEAB于點(diǎn)E.

(1)如圖1,連接EC,求證:△EBC是等邊三角形;

(2)點(diǎn)M是線段CD上的一點(diǎn)(不與點(diǎn)CD重合),以BM為一邊,在BM的下方作∠BMG=60°MGDE延長(zhǎng)線于點(diǎn)G.求證:AD=DG+MD;

(3)點(diǎn)N是線段AD上的一點(diǎn),以BN為一邊,在BN的下方作∠BNG=60°,NGDE延長(zhǎng)線于點(diǎn)G.請(qǐng)?jiān)趫D3中畫出圖形,并直接寫出NDDGAD數(shù)量之間的關(guān)系.

查看答案和解析>>

同步練習(xí)冊(cè)答案