【題目】根據定義,三角形的角平分線,中線和高線都是( )
A. 直線 B. 線段 C. 射線 D. 以上都對
科目:初中數學 來源: 題型:
【題目】在三只乒乓球上,分別寫有三個不同的正整數(用a、b、c表示),三只乒乓球除標的數字不同外,其余都相同,將三只乒乓球放在一個不透明的盒中攪拌均勻,無放回的從中依次摸出2只乒乓球,將球上面的數字相加求和.當和為偶數時,記為事件A,當和為奇數時,記為事件B.
(1)設計一組a、b、c的值,使得事件A為必然發(fā)生的事件.
(2)設計一組a、b、c的值,使得事件B發(fā)生的概率大于事件A發(fā)生的概率.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】暑假將至,某商場為了吸引顧客,設計了可以自由轉動的轉盤(如圖所示,轉盤被均勻地分為20份),并規(guī)定:顧客每 200元的商品,就能獲得一次轉動轉盤的機會.如果轉盤停止后,指針正好對準紅色、黃色、綠色區(qū)域,那么顧客就可以分別獲得200元、100元、50元的購物券,憑購物券可以在該商場繼續(xù)購物.若某顧客購物300元.
(1)求他此時獲得購物券的概率是多少?
(2)他獲得哪種購物券的概率最大?請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在¨ABCD中,過點D作DE⊥AB與點E,點F在邊CD上,DF=BE,連接AF,BF
(1)求證:四邊形BFDE是矩形;
(2)若CF=3,BF=4,DF=5,求證:AF平分∠DAB.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在△ABC中,∠C=90°,AC=4,BC=3,點P從點A出發(fā),以每秒4個單位長度的速度沿折線AC-CB運動,到點B停止.當點P不與△ABC的頂點重合時,過點P作其所在直角邊的垂線交AB 于點Q,再以PQ為斜邊作等腰直角三角形△PQR,且點R與△ABC的另一條直角邊始終在PQ同側,設△PQR與△ABC重疊部分圖形的面積為S(平方單位).點P的運動時間為t(秒).
(1)求點P在AC邊上時PQ的長,(用含t的代數式表示);
(2)求點R到AC、PQ所在直線的距離相等時t的取值范圍;
(3)當點P在AC邊上運動時,求S與t之間的函數關系式;
(4)直接寫出點R落在△ABC高線上時t的值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖□ABCD的對角線AC、BD交于點O ,AE平分∠BAD交BC于點E ,且∠ADC=600,AB=BC ,連接OE .下列 結論:①∠CAD=300 ② S□ABCD=ABAC ③ OB=AB ④ OE=BC 成立的個數有( )
A. 1個 B. 2個 C. 3個 D. 4個
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com