如圖,⊙C通過原點(diǎn)并與坐標(biāo)軸分別交于A、D兩點(diǎn),B是⊙C上一點(diǎn),若∠OBD=60°,D點(diǎn)坐標(biāo)為(3,0),則直線AD的解析式為______.
連接AD,
∵∠OBD=60°,
∴∠OAD=60°,
∵∠AOD=90°,
∴tan∠OAD=
OD
OA
,
∵D點(diǎn)坐標(biāo)為(0,3),
∴OD=3,
∴tan60°=
3
OA
,
∴OA=
3

∴A點(diǎn)坐標(biāo)為(-
3
,0),
直線AD的解析式為y=kx+b,
0=-
3
k+b
3=b
,
解得:k=
3
,
∴直線AD的解析式為y=
3
x+3.
故答案為:y=
3
x+3.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

在梯形ABCO中,OCAB,以O(shè)為原點(diǎn)建立平面直角坐標(biāo)系,A、B、C三點(diǎn)的坐標(biāo)分別是A(8,0),B(8,10),C(0,4).點(diǎn)D(4,7)為線段BC的中點(diǎn),動(dòng)點(diǎn)P從O點(diǎn)出發(fā),以每秒1個(gè)單位的速度,沿折線OAB的路線運(yùn)動(dòng),運(yùn)動(dòng)時(shí)間為t秒.
(1)求直線BC的解析式;
(2)設(shè)△OPD的面積為s,求出s與t的函數(shù)關(guān)系式,并指出自變量t的取值范圍;
(3)當(dāng)t為何值時(shí),△OPD的面積是梯形OABC的面積的
3
8
?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,直線y=kx+b與y軸的交點(diǎn)坐標(biāo)為A(0,1),與x軸的交點(diǎn)坐標(biāo)為B(-3,0);P、Q分別是x軸和直線AB上的一動(dòng)點(diǎn),在運(yùn)動(dòng)過程中,始終保持QA=QP;△APQ沿直線PQ翻折得到△CPQ,A點(diǎn)的對(duì)稱點(diǎn)是點(diǎn)C.
(1)求直線AB的解析式.
(2)是否存在點(diǎn)P,使得點(diǎn)C恰好落在直線AB上?若存在,請(qǐng)求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,直線MN:y=-x+b與x軸交于點(diǎn)M(4,0),與y軸交于點(diǎn)N,長方形ABCD的邊AB在x軸上,AB=2,AD=1.長方形ABCD由點(diǎn)A與點(diǎn)O重合的位置開始,以每秒1個(gè)單位長度的速度沿x軸正方向作勻速直線運(yùn)動(dòng),當(dāng)點(diǎn)A與點(diǎn)M重合時(shí)停止運(yùn)動(dòng).設(shè)長方形運(yùn)動(dòng)的時(shí)間為t秒,長方形ABCD與△OMN重合部分的面積為S.
(1)求直線MN的解析式;
(2)當(dāng)t=1時(shí),請(qǐng)判斷點(diǎn)C是否在直線MN上,并說明理由;
(3)請(qǐng)求出當(dāng)t為何值時(shí),點(diǎn)D在直線MN上;
(4)直接寫出在整個(gè)運(yùn)動(dòng)過程中S與t的函數(shù)關(guān)系式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,在直角坐標(biāo)系中,矩形OABC的頂點(diǎn)B的坐標(biāo)為(15,6),直線y=
1
3
x+b
恰好將矩形OABC分成面積相等的兩部分,那么b=______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

(北師大版)如圖1,在平面直角坐標(biāo)系中,以坐標(biāo)原點(diǎn)O為圓心的⊙O的半徑為
2
-1,直線a:y=-x-
2
與坐標(biāo)軸分別交于A,C兩點(diǎn),點(diǎn)B的坐標(biāo)為(4,1),⊙B與X軸相切于點(diǎn)M.
(1)求點(diǎn)A的坐標(biāo)及∠CAO的度數(shù);
(2)⊙B以每秒1個(gè)單位長度的速度沿x軸負(fù)方向平移,同時(shí),直線a繞點(diǎn)A順時(shí)針勻速旋轉(zhuǎn).當(dāng)⊙B第一次與⊙O相切時(shí),直線a也恰好與⊙B第一次相切.問:直線AC繞點(diǎn)A每秒旋轉(zhuǎn)多少度;
(3)如圖2,過A,O,C三點(diǎn)作⊙O1,點(diǎn)E是劣弧
AO
上一點(diǎn),連接EC,EA.EO,當(dāng)點(diǎn)E在劣弧
AO
上運(yùn)動(dòng)時(shí)(不與A,O兩點(diǎn)重合),
EC-EA
EO
的值是否發(fā)生變化?如果不變,求其值;如果變化,說明理由

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

有甲、乙兩家通訊公司,甲公司每月通話(不分通話地點(diǎn))的收費(fèi)標(biāo)準(zhǔn)如圖所示;乙公司每月通話的收費(fèi)標(biāo)準(zhǔn)如圖所示:
乙公司每月的收費(fèi)標(biāo)準(zhǔn)
月租費(fèi)本市接聽費(fèi)本市接打費(fèi)外市通話費(fèi)
50元0元/分0.10元/分0.90元/分
(1)觀察圖1,寫出甲公司用戶月通話時(shí)間不超過400分鐘時(shí)應(yīng)付的話費(fèi)金額;
(2)求出甲公司的用戶超過400分鐘后,通話費(fèi)用y(元)與通話時(shí)間t(分)之間的函數(shù)關(guān)系式;(寫出解題過程)
(3)王先生由于工作需要,從4月份開始經(jīng)常外市出差,估計(jì)每月各種通話時(shí)間的比例是,本地接聽時(shí)間:本地?fù)艽驎r(shí)間:外地通話時(shí)間=2:1:1,設(shè)王先生每月的各種通話時(shí)間總和為t(分),通話費(fèi)用為y(元).你認(rèn)為t為多少分鐘時(shí),乙公司和甲公司的收費(fèi)一樣多?請(qǐng)用計(jì)算方法說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,在平面直角坐標(biāo)系中,當(dāng)三角形直角頂點(diǎn)P坐標(biāo)為(3,3)時(shí),設(shè)一直角邊與x軸的正半軸交于點(diǎn)A,另一直角邊與y軸交于點(diǎn)B,在三角板繞點(diǎn)P旋轉(zhuǎn)的過程中,使得△POA為等腰三角形.請(qǐng)寫出所有滿足條件的點(diǎn)B的坐標(biāo)______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,直線y=-
1
2
x+4分別與x軸,y軸交于點(diǎn)C、D,以O(shè)D為直徑作⊙A交CD于F,F(xiàn)A的延長線交⊙A于E,交x軸于B.
(1)求點(diǎn)A的坐標(biāo);
(2)求△ADF的面積.

查看答案和解析>>

同步練習(xí)冊答案