【題目】如圖,已知,,則下列結(jié)論: ; ;③點(diǎn)P的平分線上,其中正確的是()

A.只有①B.只有②C.只有①②D.①②③

【答案】D

【解析】

根據(jù)ABAEACAD可判斷①;證ABD≌△ACE,推出∠B=∠C,根據(jù)AAS證明BPE≌△CPD即可判斷②;連接AP,根據(jù)BPE≌△CPD推出BPCP,根據(jù)SASABP≌△ACP,推出∠1=∠2即可判斷③.

解:∵ABAC,ADAE,

ABAEACAD,

EBDC,①正確;

∵在ABDACE中,,

∴△ABD≌△ACESAS),

∴∠B=∠C,

BPECPD中,

∴△BPE≌△CPDAAS),②正確;

如圖,連接AP,

∵△BPE≌△CPD,

BPCP

ABPACP中,,

∴△ABP≌△ACPSAS),

∴∠1=∠2,

∴點(diǎn)P在∠BAC的角平分線上,③正確;

故選:D

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,△ABC是邊長(zhǎng)為10的等邊三角形,PAC邊上一動(dòng)點(diǎn),由AC運(yùn)動(dòng)(與A、C不重合).

(Ⅰ)如圖1,若點(diǎn)QBC邊上一動(dòng)點(diǎn),與點(diǎn)P同時(shí)以相同的速度由CB運(yùn)動(dòng)(與C、B不重合).求證:BPAQ;

(Ⅱ)如圖2,若QCB延長(zhǎng)線上一動(dòng)點(diǎn),與點(diǎn)P同時(shí)以相同的速度由BCB延長(zhǎng)線方向運(yùn)動(dòng)(Q不與B重合),過(guò)PPEABE,連接PQABD,在運(yùn)動(dòng)過(guò)程中線段ED的長(zhǎng)是否發(fā)生變化?如果不變,求出線段ED的長(zhǎng);如果發(fā)生改變,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1是一種折疊式可調(diào)節(jié)的魚(yú)竿支架的示意圖,AE是地插,用來(lái)將支架固定在地面上,支架AB可繞A點(diǎn)前后轉(zhuǎn)動(dòng),用來(lái)調(diào)節(jié)AB與地面的夾角,支架CD可繞AB上定點(diǎn)C前后轉(zhuǎn)動(dòng),用來(lái)調(diào)節(jié)CDAB的夾角,支架CD帶有伸縮調(diào)節(jié)長(zhǎng)度的伸縮功能,已知BC=60cm.

(1)若支架AB與地面的夾角∠BAF=35°,支架CD與釣魚(yú)竿DB垂直,釣魚(yú)竿DB與地面AF平行,則支架CD的長(zhǎng)度為   cm(精確到0.1cm);(參考數(shù)據(jù):sin35°≈0.57,cos35°≈0.82,tan35°≈0.70).

(2)如圖2,保持(1)中支架AB與地面的夾角不變,調(diào)節(jié)支架CDAB的夾角,使得∠DCB=85°,若要使釣魚(yú)竿DB與地面AF仍然保持平行,則支架CD的長(zhǎng)度應(yīng)該調(diào)節(jié)為多少?(結(jié)果保留根號(hào))

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】利用配方法求出拋物線的頂點(diǎn)坐標(biāo)、對(duì)稱軸、最大值或最小值;若將拋物線先向左平移個(gè)單位,再向上平移個(gè)單位,所得拋物線的函數(shù)關(guān)系式為________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,二次函數(shù)的圖象與兩坐標(biāo)軸分別交于,三點(diǎn),一次函數(shù)的圖象與拋物線交于,兩點(diǎn).

求點(diǎn),,的坐標(biāo);

當(dāng)兩函數(shù)的函數(shù)值都隨著的增大而增大,求的取值范圍;

當(dāng)自變量滿足什么范圍時(shí),一次函數(shù)值大于二次函數(shù)值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,某人在大樓30米高(PH=30)的窗口P處進(jìn)行觀測(cè),測(cè)得山坡上A處的俯角為15°,山腳B處的俯角為60°,已知該山坡的坡度i1,點(diǎn)P,H,B,C,A在同一個(gè)平面上,點(diǎn)H,B,C在同一條直線上,PHHC.A,B兩點(diǎn)間的距離是(  )

A. 15 B. 20 C. 20 D. 10

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】解下列各題:

(1)先化簡(jiǎn),再求代數(shù)式(的值,其中x=cos30°+;

(2)已知α是銳角,且sin(α+15°)=.計(jì)算-4cosα-(π-3.14)0+tanα+()-1的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,二次函數(shù)y=x2-2x-3的圖象與x軸交于A,B兩點(diǎn),與y軸交于點(diǎn)C,連接BC,點(diǎn)D為拋物線的頂點(diǎn),點(diǎn)P是第四象限的拋物線上的一個(gè)動(dòng)點(diǎn)(不與點(diǎn)D重合).

(1)求∠OBC的度數(shù);

(2)連接CD,BD,DP,延長(zhǎng)DP交x軸正半軸于點(diǎn)E,且S△OCE=S四邊形OCDB,求此時(shí)P點(diǎn)的坐標(biāo);

(3)過(guò)點(diǎn)P作PF⊥x軸交BC于點(diǎn)F,求線段PF長(zhǎng)度的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在RtABC中,∠B=90°,AC為斜邊向外作等腰直角三角形COA,已知BC=8,OB=10,則另一直角邊AB的長(zhǎng)為__________.

查看答案和解析>>

同步練習(xí)冊(cè)答案