【題目】如圖1,在長方形中,對(duì)角線交于點(diǎn)O,動(dòng)點(diǎn)P從點(diǎn)A出發(fā),沿勻速運(yùn)動(dòng),到達(dá)點(diǎn)B時(shí)停止,設(shè)點(diǎn)P所走的路程為x.線段的長為y,若yx之間的函數(shù)圖象如圖2所示,圖象與y軸的交點(diǎn)為E.則E的縱坐標(biāo)為_______________,則長方形的周長為____________

【答案】5, 28.

【解析】

根據(jù)矩形的性質(zhì)結(jié)合圖2的最低點(diǎn)的坐標(biāo),即可得出AB、AD的長度,再利用矩形的周長公式即可求出結(jié)論.

解:∵當(dāng)OPAB時(shí),OP最小,且此時(shí)AP=4OP=3,
AB=2AP=8AD=2OP=6,OA= =5,
E的縱坐標(biāo),5

C矩形ABCD=2AB+AD=2×8+6=28
故答案為:(1). 5, (2). 28

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一貨輪在C處測得燈塔A在貨輪的北偏西30的方向上,隨后貨輪以80海里/時(shí)的速度按北偏東30°的方向航行,半小時(shí)后到達(dá)B處,此時(shí)又測得燈塔A在貨輪的北偏西75°的方向上,求此時(shí)貨輪距燈塔A的距離AB(結(jié)果保留3個(gè)有效數(shù)字, ≈2.449)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】麗君花卉基地出售兩種盆栽花卉:太陽花6/盆,繡球花10/盆.若一次購買的繡球花超過20盆時(shí),超過20盆部分的繡球花價(jià)格打8折.

(1)分別寫出兩種花卉的付款金額y()關(guān)于購買量x()的函數(shù)解析式;

(2)為了美化環(huán)境,花園小區(qū)計(jì)劃到該基地購買這兩種花卉共90盆,其中太陽花數(shù)量不超過繡球花數(shù)量的一半.兩種花卉各買多少盆時(shí),總費(fèi)用最少,最少總費(fèi)用是多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,過點(diǎn)A2,0)的兩條直線,分別交軸于B,C,其中點(diǎn)B在原點(diǎn)上方,點(diǎn)C在原點(diǎn)下方,已知AB=.

1)求點(diǎn)B的坐標(biāo);

2)若△ABC的面積為4,求的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線 l 上有 A、B 兩點(diǎn),AB=12cm,點(diǎn) O 是線段 AB 上的一點(diǎn),OA=2OB.

1OA=_______cm,OB=________cm;

2)若點(diǎn) C 是線段AB的中點(diǎn),求線段 CO 的長;

3)若動(dòng)點(diǎn) P、Q分別從 AB同時(shí)出發(fā),向右運(yùn)動(dòng),點(diǎn)P的速度為2 厘米/秒,點(diǎn)Q的速度為1厘米/秒,設(shè)運(yùn)動(dòng)時(shí)間為x秒,當(dāng) x=_____秒時(shí),PQ=4cm;

4)有兩條射線 OCOD 均從射線 OA 同時(shí)繞點(diǎn)O順時(shí)針方向旋轉(zhuǎn),OC旋轉(zhuǎn)的速度為6/秒,OD 旋轉(zhuǎn)的速度為2/.當(dāng)OCOD第一次重合時(shí),OC、OD 同時(shí)停止旋轉(zhuǎn),設(shè)旋轉(zhuǎn)時(shí)間為 t 秒,當(dāng)t為何值時(shí),射線OCOD

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】數(shù)學(xué)活動(dòng)

問題情境:

如圖1ABC,ABAC,BAC90°,DE分別是邊AB,AC的中點(diǎn)ADE繞點(diǎn)A順時(shí)針旋轉(zhuǎn)α(0°α90°)得到ADE,連接CE,BD′.探究CEBD的數(shù)量關(guān)系;

1   2 3   4

探究發(fā)現(xiàn):

(1)1,CEBD的數(shù)量關(guān)系是________;

(2)如圖2,若將問題中的條件“D,E分別是邊AB,AC的中點(diǎn)”改為“DAB邊上任意一點(diǎn)DEBCAC于點(diǎn)E,其他條件不變,(1)CEBD的數(shù)量關(guān)系還成立嗎?請(qǐng)說明理由;

拓展延伸:

(3)如圖3,(2)的條件下連接BE,CD分別取BC,CDED,BE的中點(diǎn)FG,HI,順次連接FG,HI得到四邊形FGHI.請(qǐng)判斷四邊形FGHI的形狀,并說明理由;

(4)如圖4,ABC,ABAC,BAC60°點(diǎn)D,E分別在ABAC,DEBCADE繞點(diǎn)A順時(shí)針旋轉(zhuǎn)60°得到ADE,連接CEBD′.請(qǐng)你仔細(xì)觀察,提出一個(gè)你最關(guān)心的數(shù)學(xué)問題(例如:CEBD相等嗎?)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(本題8分)如圖1,平行四邊形ABCD中,點(diǎn)O是對(duì)角線AC的中點(diǎn),EF過點(diǎn)O,與AD,BC分別相交于點(diǎn)E,F(xiàn),GH過點(diǎn)O,與AB,CD分別相交于點(diǎn)G,H,連接EG,F(xiàn)G,F(xiàn)H,EH.

(1)求證:四邊形EGFH是平行四邊形;

(2)如圖2,若EF//AB,GH//BC,在不添加任何輔助線的情況下,請(qǐng)直接寫出圖2中與四邊形AGHD面積相等的所有平行四邊形(四邊形AGHD除外).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小王家購買了一套經(jīng)濟(jì)適用房,他家準(zhǔn)備將地面鋪上地磚,地面結(jié)構(gòu)如圖所示根據(jù)圖中的數(shù)據(jù)單位:m,解答下列問題:

1寫出用含、的代數(shù)式表示地面總面積;

2已知客廳面積比衛(wèi)生間面積多21m2,且地面總面積是衛(wèi)生間面積的15倍,鋪1m2地磚的平均費(fèi)用為80元,求鋪地磚的總費(fèi)用為多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,∠MON=90°,點(diǎn)A,B分別在射線OM,ON上移動(dòng),∠OAB的平分線與∠OBA的外角平分線交于點(diǎn)C,試猜想:隨著點(diǎn)A,B的移動(dòng),∠ACB的大小是否發(fā)生變化,并說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案