分析 (1)當(dāng)m=1時(shí),拋物線解析式為y=$\frac{1}{2}$x2+x-4.然后解方程$\frac{1}{2}$x2+x-4=0可得A、B的坐標(biāo);
(2)過(guò)點(diǎn)D作DE⊥AB于點(diǎn)E,交AC于點(diǎn)F,如圖,解方程$\frac{1}{2}$x2+mx-2m-2=0得x1=2,x2=-2m-2,則A為(-2m-2,0),B(2,0),易得C(0,-2m-2),所以O(shè)A=OC=2m+2,則∠OAC=45°.利用D(-1,n)得到OE=1,AE=EF=2m+1.n=-3m-$\frac{3}{2}$,再計(jì)算出DF=m+$\frac{1}{2}$,利用三角形面積公式得到$\frac{1}{2}$(m+$\frac{1}{2}$)(2m+2)=5.解方程得到m1=$\frac{3}{2}$,m2=-3,最后利用m≥0得到m=$\frac{3}{2}$;
(3)由(2)得點(diǎn)A(-2m-2,0),B(2,0).設(shè)點(diǎn)P的坐標(biāo)為(p,q).則AM=p+2m+2,BM=2-p,
AM•BM=-p2-2mp+4m+4,PM=-q.再利用點(diǎn)P在拋物線上得到q=$\frac{1}{2}$p2+mp-2m-2,所以AM•BM=2 PM,從而得到$\frac{AM•BM}{PM}$的值.
解答 解:(1)當(dāng)m=1時(shí),拋物線解析式為y=$\frac{1}{2}$x2+x-4.
當(dāng)y=0時(shí),$\frac{1}{2}$x2+x-4=0,解得x1=-4,x2=2.
∴A(-4,0),B(2,0);
(2)過(guò)點(diǎn)D作DE⊥AB于點(diǎn)E,交AC于點(diǎn)F,如圖,
當(dāng)y=0時(shí),$\frac{1}{2}$x2+mx-2m-2=0,則(x-2)(x+2m+2)=0,
解得x1=2,x2=-2m-2,
∴點(diǎn)A的坐標(biāo)為(-2m-2,0),B(2,0),
當(dāng)x=0時(shí),y=-2m-2,則C(0,-2m-2),
∴OA=OC=2m+2,
∴∠OAC=45°.
∵D(-1,n),
∴OE=1,
∴AE=EF=2m+1.
當(dāng)x=-1時(shí),n=$\frac{1}{2}$-m-2m-2=-3m-$\frac{3}{2}$,
∴DE=3m+$\frac{3}{2}$,
∴DF=3m+$\frac{3}{2}$-(2m+1)=m+$\frac{1}{2}$,
又∵S△ACD=$\frac{1}{2}$DF•AO.
∴$\frac{1}{2}$(m+$\frac{1}{2}$)(2m+2)=5.
2m2+3m-9=0,解得m1=$\frac{3}{2}$,m2=-3.
∵m≥0,
∴m=$\frac{3}{2}$;
(3)點(diǎn)A的坐標(biāo)為(-2m-2,0),點(diǎn)B的坐標(biāo)為(2,0).
設(shè)點(diǎn)P的坐標(biāo)為(p,q).則AM=p+2m+2,BM=2-p,
AM•BM=(p+2m+2)( 2-p)=-p2-2mp+4m+4,
PM=-q.
因?yàn)辄c(diǎn)P在拋物線上,
所以q=$\frac{1}{2}$p2+mp-2m-2.
所以AM•BM=2 PM.
即$\frac{AM•BM}{PM}$=2.
點(diǎn)評(píng) 本題考查了拋物線與x軸的交點(diǎn):把求二次函數(shù)y=ax2+bx+c(a,b,c是常數(shù),a≠0)與x軸的交點(diǎn)坐標(biāo)問(wèn)題轉(zhuǎn)化為解關(guān)于x的一元二次方程.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
方程兩根的情況 | 對(duì)應(yīng)的二次函數(shù)的大致圖象 | a,b,c滿足的條件 |
方程有兩個(gè) 不相等的負(fù)實(shí)根 | $\left\{\begin{array}{l}a>0\\△={b^2}-4ac>0\\-\frac{2a}<0\\ c>0.\end{array}\right.$ | |
方程有一個(gè)負(fù)實(shí)根,一個(gè)正實(shí)根 | $\left\{\begin{array}{l}a>0\\ c<0.\end{array}\right.$ | |
方程有兩個(gè) 不相等的正實(shí)根 | $\left\{\begin{array}{l}a>0\\△={b^2}-4ac>0\\-\frac{2a}>0\\ c>0.\end{array}\right.$ |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | ab>0 | B. | a+b>0 | C. | |a|-|b|<0 | D. | a-b<0 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com