【題目】如圖,AB∥CD,∠DCE=118°,∠AEC的角平分線EF與GF相交于點F,∠BGF=132°,則∠F的度數(shù)是 .
【答案】11°
【解析】解:∵AB∥CD,∠DCE=118°, ∴∠AEC=118°,∠BEC=180°﹣118°=62°,
∵GF交∠AEC的平分線EF于點F,
∴∠CEF= ×118°=59°,
∴∠GEF=62°+59°=121°,
∵∠BGF=132°,
∴∠F=∠BGF﹣∠GEF=132°﹣121°=11°.
所以答案是:11°.
【考點精析】根據(jù)題目的已知條件,利用角的平分線和平行線的性質(zhì)的相關知識可以得到問題的答案,需要掌握從一個角的頂點引出的一條射線,把這個角分成兩個相等的角,這條射線叫做這個角的平分線;兩直線平行,同位角相等;兩直線平行,內(nèi)錯角相等;兩直線平行,同旁內(nèi)角互補.
科目:初中數(shù)學 來源: 題型:
【題目】我們定義:有一組對角相等而另一組對角不相等的凸四邊形叫做等對角四邊形.請解決下列問題:
(1)已知:如圖1,四邊形ABCD是等對角四邊形,∠A≠∠C,∠A=70°,∠B=75°,則∠C=°,∠D=°
(2)在探究等對角四邊形性質(zhì)時: 小紅畫了一個如圖2所示的等對角四邊形ABCD,其中,∠ABC=∠ADC,AB=AD,此時她發(fā)現(xiàn)CB=CD成立,請你證明該結論;
(3)圖①、圖②均為4×4的正方形網(wǎng)格,線段AB、BC的端點均在網(wǎng)點上.按要求在圖①、圖②中以AB和BC為邊各畫一個等對角四邊形ABCD. 要求:四邊形ABCD的頂點D在格點上,所畫的兩個四邊形不全等.
(4)已知:在等對角四邊形ABCD中,∠DAB=60°,∠ABC=90°,AB=5,AD=4,求對角線AC的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,C為線段AB上一點,點D為BC的中點,且AB=18cm,AC=4CD.
(1)圖中共有 條線段;
(2)求AC的長;
(3)若點E在直線AB上,且EA=2cm,求BE的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】小明騎車從家出發(fā),先向東騎行1km到達A村,繼續(xù)向東騎行4km到達B村,然后向西騎行8km到達C村,最后回到家.
(1) 以快遞公司為原點,以向東方向為正方向,用1 cm表示1 km,畫出數(shù)軸,并在數(shù)軸上表示出A、B、C三個店的位置;
(2) C店離A店有多遠?
(3) 快遞員一共騎行了多少千米?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在正方形ABCD中,BD是一條對角線,點P在射線CD上(與點C、D不重合),連接AP,平移△ADP,使點D移動到點C,得到△BCQ,過點Q作QH⊥BD于H,連接AH,PH.
(1)若點P在線段CD上,如圖1.
①依題意補全圖1;
②判斷AH與PH的數(shù)量關系與位置關系并加以證明;
(2)若點P在線段CD的延長線上,且∠AHQ=152°,正方形ABCD的邊長為1,請寫出求DP長的思路.(可以不寫出計算結果)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AD 是一段斜坡,AB 是水平線,現(xiàn)為了測斜坡上一點 D 的鉛直高度(即 垂線段 DB 的長度),小亮在點 D 處立上一竹竿 CD,并保證 CD=AB,CD⊥AD,然后在竿頂 C 處垂下一根細繩(細繩末端掛一重錘,以使細繩與水平線垂直),細繩與斜坡 AD 交于點E,此時他測得 CE=8 m,AE=6 m,求 BD 的長度.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,已知拋物線y=﹣x2+bx+c與x軸交于A(﹣1,0),B兩點,(點A在點B的左側),與直線AC交于點C(2,3),直線AC與拋物線的對稱軸l相交于點D,連接BD.
(1)求拋物線的函數(shù)表達式,并求出點D的坐標;
(2)如圖2,若點M、N同時從點D出發(fā),均以每秒1個單位長度的速度分別沿DA、DB運動,連接MN,將△DMN沿MN翻折,得到△D′MN,判斷四邊形DMD′N的形狀,并說明理由,當運動時間t為何值時,點D′恰好落在x軸上?
(3)在平面內(nèi),是否存在點P(異于A點),使得以P、B、D為頂點的三角形與△ABD相似(全等除外)?若存在,請直接寫出點P的坐標,若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com