在平面直角坐標(biāo)系中,現(xiàn)將一塊腰長為
5
的等腰直角三角板ABC放在第三象限,斜靠在兩坐標(biāo)軸上,且點A(0,-2),直角頂點C在x軸的負半軸上(如圖所示),拋物線y=ax2+ax+2經(jīng)過點B.
(1)點C的坐標(biāo)為______,點B的坐標(biāo)為______;
(2)求拋物線的解析式;
(3)在拋物線上是否還存在點P(點B除外),使△ACP仍然是以AC為直角邊的等腰直角三角形?若存在,求所有點P的坐標(biāo);若不存在,請說明理由.
(1)作BD⊥x軸于D,如圖,
∵AC=
5
,A點坐標(biāo)為(0,-2),
∴OC=
AC2-OA2
=1,
∴C點坐標(biāo)為(-1,0);
∵△ABC為等腰直角三角形,
∴∠ACB=90°,BC=AC,
∴∠DCB+∠ACO=90°,∠DCB+∠DBC=90°,
∴∠DBC=∠ACO,
∴Rt△DBC≌Rt△OCA,
∴DC=OA=2,DB=OC=1,
∴OD=OC+CD=1+2=3,
∴B點坐標(biāo)為(-3,-1);
故答案為(-1,0),(-3,-1);
(2)把B(-3,-1)代入y=ax2+ax+2得(-3)2a-3a+2=-1,解得a=-
1
2
,
拋物線的解析式為y=-
1
2
x2-
1
2
x+2;
(3)存在.理由如下:
①過A點作P1A⊥AC,且AP1=AC=
5
,則△ACP1為等腰直角三角形,再作P1E⊥y軸于E,如圖,
與(1)一樣可證得Rt△EAP1≌Rt△OCA,
∴P1E=OA=2,AE=OC=1,
∴OE=OA-AE=2-1=1,
∴P1點的坐標(biāo)為(2,-1),
當(dāng)x=2時,y=-
1
2
x2-
1
2
x+2=-
1
2
×22-
1
2
×2+2=-1,
∴P1點在拋物線上;
②過C點作P2C⊥CA,且CP2=AC=
5
,則△ACP2為等腰直角三角形,再作P2F⊥x軸于F,如圖,
與(1)一樣可證得Rt△FCP2≌Rt△OCA,
∴P2F=OC=1,CF=OA=2,
∴OF=CF-OC=2-1=1,
∴P2點的坐標(biāo)為(1,1),
當(dāng)x=1時,y=-
1
2
x2-
1
2
x+2=-
1
2
×12-
1
2
×1+2=1,
∴P2點在拋物線上,
∴在拋物線上存在點P(點B除外),使△ACP仍然是以AC為直角邊的等腰直角三角形.滿足條件的點P的坐標(biāo)為(2,-1)、(1,1).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在直角坐標(biāo)系中,以AB為直徑的⊙C交x軸于A,交y軸于B,滿足OA:OB=4:3,以O(shè)C為直徑作⊙D,設(shè)⊙D的半徑為2.
(1)求⊙C的圓心坐標(biāo);
(2)過C作⊙D的切線EF交x軸于E,交y軸于F,求直線EF的解析式;
(3)拋物線y=ax2+bx+c(a≠0)的對稱軸過C點,頂點在⊙C上,與y軸交點為B,求拋物線的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,直線l經(jīng)過點A(4,0)和點B(0,4),且與二次函數(shù)y=ax2的圖象在第一象限內(nèi)相交于點P,若△AOP的面積為
9
2
,求二次函數(shù)的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖已知拋物線y=ax2+bx+3(a≠0)與x軸交于點A(1,0)和點B(-3,0),與y軸交于點C.
(1)求拋物線的解析式;
(2)點D的坐標(biāo)為(-2,0).問:直線AC上是否存在點F,使得△ODF是等腰三角形?若存在,請直接寫出所有符合條件的點F的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知拋物線y=ax2+bx+c(a>0)的圖象經(jīng)過點B(14,0)和C(0,-8),對稱軸為x=4.
(1)求該拋物線的解析式;
(2)點D在線段AB上且AD=AC,若動點P從A出發(fā)沿線段AB以每秒1個單位長度的速度勻速運動,同時另一動點Q以某一速度從C出發(fā)沿線段CB勻速運動,問是否存在某一時刻,使線段PQ被直線CD垂直平分?若存在,請求出此時的時間t(秒)和點Q的運動速度;若不存在,請說明理由;
(3)在(2)的結(jié)論下,直線x=1上是否存在點M使△MPQ為等腰三角形?若存在,請求出所有點M的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

在平面直角坐標(biāo)系中,已知拋物線y=-x2+bx+c與x軸交于點A(-1,0)、B(3,0),與y軸的正半軸交于點C,頂點為E.
(1)求拋物線解析式及頂點E的坐標(biāo);
(2)如圖,過點E作BC平行線,交x軸于點F,在不添加線和字母情況下,圖中面積相等的三角形有:______;
(3)將拋物線向下平移,與x軸交于點M、N,與y軸的正半軸交于點P,頂點為Q.在四邊形MNQP中滿足S△NPQ=S△MNP,求此時直線PN的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

一位籃球運動員站在罰球線后投籃,球入籃得分.下列圖象中,可以大致反映籃球出手( 。
A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

附加題:如圖所示,已知主橋拱為拋物線型,在正常水位下測得主拱寬24m,最高點離水面8m,以水平線AB為x軸,AB的中點為原點建立坐標(biāo)系.
(1)此橋拱線所在拋物線的解析式.
(2)橋邊有一浮在水面部分高4m,最寬處12
2
m的魚船,試探索此船能否開到橋下?說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,正方形ABCD的邊長為4,P是邊BC上一點,QP⊥AP交DC于Q,問當(dāng)點P在何位置時,△ADQ的面積最小并求出這個最小面積.

查看答案和解析>>

同步練習(xí)冊答案