【題目】(1)如圖1,同心圓中,大圓O的弦AB與小圓O切于點(diǎn)P,且AB=16,則圓環(huán)面積為________;
(2)如圖2,同心圓中,大圓O的弦AB與小圓O相交,其中一個交點(diǎn)為點(diǎn)P,且AP=2,PB=8,則圓環(huán)面積為________.
【答案】
【解析】分析:(1)根據(jù)圓環(huán)的面積等于兩圓的面積差,再根據(jù)切線的性質(zhì)定理、勾股定理、垂徑定理求解;
(2)根據(jù)圓環(huán)的面積等于兩圓的面積差,再根據(jù)垂徑定理、勾股定理求解即可.
詳解:(1)連接OA、OB、OP.
∵大圓的弦AB是小圓的切線,∴OP⊥AB,AP=PB,∴OB2﹣OP2=(16÷2)2=64.
∵S圓環(huán)=S大﹣S小=πOB2﹣πOP2=π(OB2﹣OP2),∴S圓環(huán)=64π.
(2)過O作OD⊥AB于D,連接OP,OA.
∵AP=2,PB=8,∴AB=10.
∵OD⊥AB,∴AD=AB=5.
∵AP=2,∴PD=3.
在Rt△AOD和Rt△POD中,
∵OA2=AD2+OD2,OP2=PD2+OD2,∴OA2-OP2= AD2-PD2= 52-32=16.
S圓環(huán)=S大﹣S小=πOA2﹣πOP2=π(OA2﹣OP2),∴S圓環(huán)=16π.
故答案為:(1)64π;(2)16π.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,點(diǎn)D是△ABC內(nèi)一點(diǎn),AD=BD,且AD⊥BD,連接CD.過點(diǎn)C作CE⊥BC交AD的延長線于點(diǎn) E,連接BE.過點(diǎn)D作DF⊥CD交BC于點(diǎn)F.
(1)若BD=DE=,CE=,求BC的長;
(2)若BD=DE,求證:BF=CF.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方形ABCD 中,O是對角線AC與BD的交點(diǎn),M是BC邊上的動點(diǎn)(點(diǎn)M不與B,C重合),CN⊥DM,CN與AB交于點(diǎn)N ,連接OM,ON,MN .下列五個結(jié)論:①△CNB≌△DMC ;②△CON≌△DOM ;③△OMN≌△OAD ;④ ;⑤若AB=2,則 的最小值是 ,其中正確結(jié)論的個數(shù)是 ( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)如圖1,△ABC中,∠C=90°,請用直尺和圓規(guī)作一條直線,把△ABC分割成兩個等腰三角形(不寫作法,但須保留作圖痕跡).
(2)已知內(nèi)角度數(shù)的兩個三角形如圖2,圖3所示.請你判斷,能否分別畫一條直線把它們分割成兩個等腰三角形?若能,請寫出分割成的兩個等腰三角形頂角的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)軸上兩點(diǎn)A、B對應(yīng)的數(shù)分別為-1、4,點(diǎn)P為數(shù)軸上一動點(diǎn),其對應(yīng)的數(shù)為x.
(1)若點(diǎn)P到點(diǎn)A、點(diǎn)B的距離相等,則點(diǎn)P對應(yīng)的數(shù)是_____;
(2)數(shù)軸上是否存在點(diǎn)P,使點(diǎn)P到點(diǎn)A、點(diǎn)B的距離之和為8?若存在,請直接寫出x的值,若不存在,請說明理由;
(3)現(xiàn)在點(diǎn)A、點(diǎn)B分別以2個單位長度/秒和0.5個單位長度/秒的速度同時向右運(yùn)動,點(diǎn)P以5個單位長度/秒的速度同時從O點(diǎn)(即原點(diǎn))向左運(yùn)動,當(dāng)點(diǎn)A與點(diǎn)B之間的距離為3個單位長度時,求點(diǎn)P所對應(yīng)的數(shù)是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】用如圖所示矩形紙片的四個角都剪去一個邊長為的正方形(陰影部分).并制成一個長方體紙盒。
(1)用a,b,x表示紙片剩余部分的面積和紙盒的底面積;
(2)當(dāng)a=6,b=4,且剪去部分的面積等于剩余部分的面積時,求正方形的邊長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)將兩條寬度一樣的矩形紙條如圖交叉,請判斷重疊部分是一個什么圖形?并證明你的結(jié)論。
(2) 若兩張矩形紙條的長度均為8,寬度均為2,請求出重疊部分的圖形的周長的最大值。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知在矩形ABCD中,AD=6,DC=7,點(diǎn)H為AD上一點(diǎn),并且AH=2,點(diǎn)E為AB上一動點(diǎn),以HE為邊長作菱形HEFG,并且使點(diǎn)G在CD邊上,連接CF
(1)如圖1,當(dāng)DG=2時,求證:四邊形EFGH為正方形;
(2)如圖2,當(dāng)DG=6時,求△CGF的面積;
(3)當(dāng)DG的長度為何值時,△CGF的面積最小,并求出△CGF面積的最小值;
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】有六張完全相同的卡片,分A,B兩組,每組三張,在A組的卡片上分別畫上☆○☆,B組的卡片上分別畫上☆○○,如圖1所示.
(1)若將卡片無標(biāo)記的一面朝上擺在桌上,再分別從兩組卡片中隨機(jī)各抽取一張,求兩張卡片上標(biāo)記都是☆的概率(請用畫樹形圖法或列表法求解)
(2)若把A,B兩組卡片無標(biāo)記的一面對應(yīng)粘貼在一起得到3張卡片,其正反面標(biāo)記如圖2所示,將卡片正面朝上擺放在桌上,并用瓶蓋蓋住標(biāo)記.若揭開蓋子,看到的卡片正面標(biāo)記是☆后,猜想它的反面也是☆,求猜對的概率是多少?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com