【題目】已知,如圖,B,C兩點把線段AD分成2:5:3三部分,M為AD的中點,BM=6cm,求CM和AD的長.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知△ABC請你按要求作圖、解答(不寫作法,但要保留作圖痕跡):
(1)用直尺和圓規(guī),過點B作∠ABC的角平分線交AC于P;
(2)用直尺和直角三角板的直角畫PD⊥AB、PE⊥BC垂足分別為D、E;
(3)用刻度尺分別量PD= cm和PE= cm.得PD PE(填大小關(guān)系)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,OP是∠MON的平分線,請你利用該圖形畫一對以OP所在直線為對稱軸的全等三角形,并將添加的全等條件標(biāo)注在圖上.
請你參考這個作全等三角形的方法,解答下列問題:
(1)如圖2,在△ABC中,∠ACB是直角,∠B=60°,AD、CE分別是∠BAC和∠BCA的平分線,AD、CE相交于點F,求∠EFA的度數(shù);
(2)在(1)的條件下,請判斷FE與FD之間的數(shù)量關(guān)系,并說明理由;
(3)如圖3,在△ABC中,如果∠ACB不是直角,而( 1 )中的其他條件不變,試問在(2)中所得結(jié)論是否仍然成立?若成立,請證明;若不成立,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在下列條件中,不能證明△ABD≌△ACD的是( ).
A.BD=DC, AB=AC B.∠ADB=∠ADC,BD=DC
C.∠B=∠C,∠BAD=∠CAD D. ∠B=∠C,BD=DC
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(探究)如圖①,∠AFH和∠CHF的平分線交于點O,EG經(jīng)過點O且平行于FH,分別與AB、CD交于點E、G.
(1)若∠AFH=60°,∠CHF=50°,則∠EOF=_____度,∠FOH=_____度.
(2)若∠AFH+∠CHF=100°,求∠FOH的度數(shù).
(拓展)如圖②,∠AFH和∠CHI的平分線交于點O,EG經(jīng)過點O且平行于FH,分別與AB、CD交于點E、G.若∠AFH+∠CHF=α,直接寫出∠FOH的度數(shù).(用含a的代數(shù)式表示)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,下列判斷錯誤的是( )
A. 如果∠2=∠4,那么AB∥CD B. 如果∠1=∠3,那么AB∥CD
C. 如果∠BAD+∠D=180°,那么AB∥CD D. 如果∠BAD+∠B=180,那么AD∥CD
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,O為坐標(biāo)原點,△ABO的邊AB垂直于x軸、垂足為點B,反比例函數(shù)y= (x<0)的圖象經(jīng)過AO的中點C、且與AB相交于點D,OB=8、AD=6.
(1)求反比例函數(shù)y= 的解析.
(2)求經(jīng)過C,D兩點的一次函數(shù)解析式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,小王在長江邊某瞭望臺D處,測得江面上的漁船A的俯角為40°,若DE=3米,CE=2米,CE平行于江面AB,迎水坡BC的坡度i=1:0.75,坡長BC=10米,則此時AB的長約為( )(參考數(shù)據(jù):sin40°≈0.64,cos40°≈0.77,tan40°≈0.84).
A.5.1米
B.6.3米
C.7.1米
D.9.2米
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小李以每千克0.8元的價格從批發(fā)市場購進(jìn)若干千克西瓜到市場去銷售,在銷售了部分西瓜之后,余下的每千克降價0.4元,全部售完;銷售金額與賣西瓜千克數(shù)之間的關(guān)系如圖所示,那么小李賺了_________.元.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com