12.如圖,點(diǎn)P是菱形ABCD的對(duì)角線BD上一點(diǎn),連接CP并延長(zhǎng),交AD于E,交BA的延長(zhǎng)線于點(diǎn)F.
(1)求證:∠DCP=∠DAP;
(2)如果PE=4,EF=5,求線段PC的長(zhǎng).

分析 (1)根據(jù)菱形的對(duì)角線平分一組對(duì)角可得∠BDC=∠BDA,然后利用“邊角邊”證明△APD和△CPD全等,然后根據(jù)全等三角形對(duì)應(yīng)邊相等證明即可
(2)利用兩組角相等則兩三角形相似證明△APE與△FPA;根據(jù)相似三角形的對(duì)應(yīng)邊成比例及全等三角形的對(duì)應(yīng)邊相等即可得到結(jié)論.

解答 (1)證明:在菱形ABCD中,AD=CD,∠BDC=∠BDA,
在△APD和△CPD中,
$\left\{\begin{array}{l}{AD=CD}\\{∠BDC=∠CBD}\\{DP=DP}\end{array}\right.$,
∴△APD≌△CPD(SAS),
∴∠DCP=∠DAP;
(2)∵△APD≌△CPD,
∴∠DAP=∠DCP,
∵CD∥AB,
∴∠DCF=∠DAP=∠CFB,
又∵∠FPA=∠FPA,
∴△APE∽△FPA.
∴$\frac{AP}{PF}=\frac{PE}{PA}$.
∴PA2=PE•PF.
∵△APD≌△CPD,
∴PA=PC.
∴PC2=PE•PF,
∵PE=4,EF=5,
∴PF=9,
∴PC=6.

點(diǎn)評(píng) 本題考查了相似三角形的判定,全等三角形的判定,菱形的性質(zhì)等知識(shí)點(diǎn),本題中依據(jù)三角形的全等或相似得出線段的相等或比例關(guān)系是解題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:填空題

2.若1<x<2,則$\sqrt{{{({x-2})}^2}}+\sqrt{{{({1-x})}^2}}$=1.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

3.如圖,在?ABCD中,AB⊥AC,AB=1,BC=$\sqrt{5}$,對(duì)角線BD、AC交于點(diǎn)O.將直線AC繞點(diǎn)O順時(shí)針旋轉(zhuǎn)分別交BC、AD于點(diǎn)E、F.
(1)試說明在旋轉(zhuǎn)過程中,AF與CE總保持相等;
(2)當(dāng)旋轉(zhuǎn)角為90°時(shí),判斷四邊形ABEF的形狀并證明;
(3)在旋轉(zhuǎn)過程中,四邊形BEDF可能是菱形嗎?如果不能,請(qǐng)說明理由;如果能,求出此時(shí)AC 繞點(diǎn)O順時(shí)針旋轉(zhuǎn)的角度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:選擇題

20.下列計(jì)算結(jié)果為負(fù)數(shù)的是(  )
A.|-3|B.(-3)0C.-(+3)D.(-3)2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:填空題

7.甲、乙兩車分別從A、B兩地同時(shí)出發(fā),相向而行,甲車從A地行駛到B地后,立即按原速度返回A地,乙車從B地行駛到A地,兩車到達(dá)A地均停止運(yùn)動(dòng).兩車之間的距離y(單位:千米)與乙車行駛時(shí)間x(單位:小時(shí))之間的函數(shù)關(guān)系如圖所示,問兩車第二次相遇時(shí)乙車行駛的時(shí)間為$\frac{15}{2}$小時(shí).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

17.如圖,AB是半圓O的直徑,點(diǎn)C為半徑OB上一點(diǎn),過點(diǎn)C作CD⊥AB交半圓O于點(diǎn)D,將△ACD沿AD翻折得到△AED,AE交半圓O于點(diǎn)F,連接DF、OD.
(1)求證:DE是半圓O的切線;
(2)當(dāng)OC=BC時(shí),判斷四邊形ODFA的形狀,并證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

4.如圖,已知△ABC中,AB=AC,∠A=30°,AB=16,以AB為直徑的⊙O與BC邊相交于點(diǎn)D,與AC交于點(diǎn)F,過點(diǎn)D作DE⊥AC于點(diǎn)E.
(1)求證:DE是⊙O的切線;
(2)求CE的長(zhǎng);
(3)過點(diǎn)B作BG∥DF,交⊙O于點(diǎn)G,求弧BG的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

1.一個(gè)角的余角比這個(gè)角的$\frac{1}{2}$多21°,求這個(gè)角的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

2.如圖,△ABC中,AB=AC=10,BC=12,點(diǎn)D在邊BC上,且BD=4,以點(diǎn)D為頂點(diǎn)作∠EDF=∠B,分別交邊AB于點(diǎn)E,交AC或延長(zhǎng)線于點(diǎn)F.
(1)當(dāng)AE=4時(shí),求AF的長(zhǎng);
(2)當(dāng)以邊AC為直徑的⊙O與線段DE相切時(shí),求BE的長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案