【題目】如圖,折疊矩形ABCD的一邊AD,使點D落在BC邊的點F處,已知折痕AE=5cm, 且tan∠EFC=,那么矩形ABCD的周長_____________cm.
【答案】36.
【解析】
試題∵△AFE和△ADE關(guān)于AE對稱,∴∠AFE=∠D=90°,AF=AD,EF=DE.∵tan∠EFC==,∴可設(shè)EC=3x,CF=4x,那么EF=5x,∴DE=EF=5x.∴DC=DE+CE=3x+5x=8x.∴AB=DC=8x.
∵∠EFC+∠AFB=90°, ∠BAF+∠AFB=90°,∴∠EFC=∠BAF.∴tan∠BAF=tan∠EFC=,∴=.∴AB=8x,∴BF=6x.∴BC=BF+CF=10x.∴AD=10x.在Rt△ADE中,由勾股定理,得AD2+DE2=AE2.∴(10x)2+(5x)2=(5)2.解得x=1.∴AB=8x=8,AD=10x=10.∴矩形ABCD的周長=8×2+10×2=36.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某中學(xué)數(shù)學(xué)興趣小組在一次課外學(xué)習(xí)與探究中遇到一些新的數(shù)學(xué)符號,他們將其中某些材料摘錄如下:
對于三個實數(shù)a,b,c,用M{a,b,c}表示這三個數(shù)的平均數(shù),用min{a,b,c}表示這三個數(shù)中最小的數(shù).例如:M{1,2,9}==4,min{1,2,﹣3}=﹣3,min{3,1,1}=1.請結(jié)合上述材料,解決下列問題:
(1)①M{(﹣2)2,22,﹣22}= ; ②min{sin30°,cos60°,tan45°}= ;
(2)若M{﹣2x,x2,3}=2,求x的值;
(3)若min{3﹣2x,1+3x,﹣5}=﹣5,求x的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,函數(shù)(,,為常數(shù),且)經(jīng)過點、,且,下列結(jié)論:
①;②;③若點,在拋物線上,則;④.其中結(jié)論正確的有( )個
A.1B.2C.3D.4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】PM2.5是指大氣中直徑小于或等于2.5μm(0.0000025m)的顆粒物,含有大量有毒、有害物質(zhì),也稱可入肺顆粒物.將0.0000025用科學(xué)記數(shù)法表示為
A.25×10﹣7B.2.5×10﹣6C.0.25×10﹣5D.2.5×106
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面系中,一次函數(shù)的圖像經(jīng)過定點A,反比例函數(shù)的圖像經(jīng)過點A,且與一次函數(shù)的圖像相交于點B(,m).
(1)求m、a的值;
(2)設(shè)橫坐標為n的點P在反比例函數(shù)圖象的第三象限上,且在點B右側(cè),連接AP、BP,△ABP的面積為12,求代數(shù)式的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知拋物線與軸交于,點,與軸交于點,拋物線的頂點為,連接.
(1)求此拋物線的表達式;
(2)在拋物線上找一點,使得與垂直,且直線與軸交于點,求點的坐標;
(3)拋物線對稱軸上是否存在一點,使得,若存在,求出點坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在平面直角坐標系中,直線y=x+2與x軸交于點A,與y軸交于點C,二次函數(shù)y=x2+bx+c的圖像經(jīng)過A、C兩點,與x軸的另一交點為點B.
(1)求二次函數(shù)的表達式;
(2)當(dāng)m≤x≤m1時,二次函數(shù)yx2bxc的最大值為2m,求m的值;
(3)如圖2,點D為直線AC上方二次函數(shù)圖像上一動點,連接BC、CD,設(shè)直線BD交線段AC于點E,△CDE的面積為S1,△BCE的面積為S2,求的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠ACB=90°,BC=2,∠A=30°,將△ABC繞點C順時針旋轉(zhuǎn)120°,若P為AB上一動點,旋轉(zhuǎn)后點P的對應(yīng)點為點P',則線段PP'長度的最小值是( )
A.B.2C.3D.2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,平面直角坐標系xOy中,一次函數(shù)y=kx-k的圖象與函數(shù)y=(x>0)的圖象交點為A,與y軸交于點B,P是x軸上一點,且△PAB的面積是4,則P的坐標____.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com