【題目】如圖所示,已知AB是圓O的直徑,圓O過BC的中點(diǎn)D,且DE⊥AC.

(1)求證:DE是圓O的切線;
(2)若∠C=30°,CD=10cm,求圓O的半徑.

【答案】
(1)證明:連接OD,

∵D是BC的中點(diǎn),O為AB的中點(diǎn),

∴OD∥AC.

又∵DE⊥AC,

∴OD⊥DE,

∵OD為半徑,

∴DE是圓O的切線


(2)解:連接AD;

∵AB是圓O的直徑,

∴∠ADB=90°=∠ADC,

∴△ADC是直角三角形.

∵∠C=30°,CD=10,

∴AD=

∵OD∥AC,OD=OB,

∴∠B=30°,

∴△OAD是等邊三角形,

∴OD=AD=

∴圓O的半徑為 cm.


【解析】(1)連接OD,利用三角形的中位線定理可得出OD∥AC,再利用平行線的性質(zhì)就可證明DE是圓O的切線.(2)利用30°特殊角度,可求出AD的長(zhǎng),由兩直線平行同位角相等,可得出∠ODB=∠C=30°,從而△ABD為直角三角形,圓O的半徑可求.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計(jì)算與解方程
(1)計(jì)算: ﹣3×(﹣2)2;
(2)用公式法解:x2﹣3x﹣1=0.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】解方程
(1)4(x﹣2)2﹣81=0.
(2)x2﹣3x+2=0.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知△ABC,按如下步驟作圖:

①分別以A,C為圓心,大于的長(zhǎng)為半徑畫弧,兩弧交于P,Q兩點(diǎn);

②作直線PQ,分別交AB,AC于點(diǎn)E,D,連接CE;

③過C作CF∥AB交PQ于點(diǎn)F,連接AF.

(1)求證:△AED≌△CFD;

(2)求證:四邊形AECF是菱形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)的解析式是y=x2﹣2x﹣3
(1)用配方法將y=x2﹣2x﹣3化成y=a(x﹣h)2+k的形式;
(2)在直角坐標(biāo)系中,用五點(diǎn)法畫出它的圖像;

(3)利用圖象求當(dāng)x為何值時(shí),函數(shù)值y<0
(4)當(dāng)x為何值時(shí),y隨x的增大而減。
(5)當(dāng)﹣3<x<3時(shí),觀察圖象直接寫出函數(shù)值y的取值的范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABC中,AD平分∠BAC,DE∥AC交AB于E,DFAB交AC于F,若AF=6,則四邊形AEDF的周長(zhǎng)是(   )

A. 24 B. 28 C. 32 D. 36

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】把四張形狀大小完全相同的小長(zhǎng)方形卡片(如圖①)不重疊的放在一個(gè)底面為長(zhǎng)方形(長(zhǎng)為m厘米,寬為n厘米)的盒子底部(如圖②),盒子底面未被卡片覆蓋的部分用陰影表示,則圖②中兩塊陰影部分的周長(zhǎng)和是( )

A. 4m厘米 B. 4n厘米 C. 2(m+n)厘米 D. 4(m-n)厘米

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,四邊形ABCD是正方形,AB=4,點(diǎn)G在BC邊上,BG=3,DEAG于點(diǎn)E,BFAG于點(diǎn)F.

(1)求BF和DE的長(zhǎng);

(2)如圖2,連接DF、CE,探究并證明線段DF與CE的數(shù)量關(guān)系與位置關(guān)系.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】將正方體骰子(相對(duì)面上的點(diǎn)數(shù)分別為1和6、2和5、3和4)放置于水平桌面上,如圖1。在圖2中,將骰子向右翻滾90°,然后在桌面上按逆時(shí)針方向旋轉(zhuǎn)90°,則完成一次變換。若骰子的初始位置為圖1所示的狀態(tài),那么按上述規(guī)則連續(xù)完成14次變換后,骰子朝上一面的點(diǎn)數(shù)是_____________________。

查看答案和解析>>

同步練習(xí)冊(cè)答案