【題目】用一個(gè)平面去截①圓錐、②圓柱、③球、④五棱柱,能得到的截面是圓的圖形是( )
A.②④B.①②③C.②③④D.①③④
【答案】B
【解析】
根據(jù)圓錐、圓柱、球、五棱柱的形狀特點(diǎn)逐一判斷即可.
如果截面與圓錐底面平行,那么截面是圓,故①符合題意,
如果截面與圓柱的上下面平行,那么截面是圓,故②符合題意,
用一個(gè)平面去截球,截面一定是圓,故③符合題意,
用一個(gè)平面去截五棱柱,無(wú)論怎么去截,截面都不可能有弧度,故④不符合題意,
綜上所述:能得到的截面是圓的圖形是①②③,
故選:B.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知拋物線(xiàn)過(guò)點(diǎn)A(﹣3,0),B(﹣2,3),C(0,3),其頂點(diǎn)為D.
(1)求拋物線(xiàn)的解析式;
(2)設(shè)點(diǎn)M(1,m),當(dāng)MB+MD的值最小時(shí),求m的值;
(3)若P是拋物線(xiàn)上位于直線(xiàn)AC上方的一個(gè)動(dòng)點(diǎn),求△APC的面積的最大值;
(4)若拋物線(xiàn)的對(duì)稱(chēng)軸與直線(xiàn)AC相交于點(diǎn)N,E為直線(xiàn)AC上任意一點(diǎn),過(guò)點(diǎn)E作EF∥ND交拋物線(xiàn)于點(diǎn)F,以N,D,E,F為頂點(diǎn)的四邊形能否為平行四邊形?若能,求點(diǎn)E的坐標(biāo);若不能,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某學(xué)校初一年級(jí)參加社會(huì)實(shí)踐課,報(bào)名第一門(mén)課的有x人,第二門(mén)課的人數(shù)比第一門(mén)課的少10人,現(xiàn)在需要從報(bào)名第二門(mén)課的人中調(diào)出10人學(xué)習(xí)第一門(mén)課,那么:
(1)報(bào)兩門(mén)課的共有多少人?
(2)調(diào)動(dòng)后,報(bào)名第一門(mén)課的人數(shù)為 人,第二門(mén)課人數(shù)為 人.
(3)調(diào)動(dòng)后,報(bào)名第一門(mén)課比報(bào)名第二門(mén)課多多少人?計(jì)算出代數(shù)式后,請(qǐng)選擇一個(gè)你覺(jué)得合適的x的值代入,并求出具體的人數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,拋物線(xiàn)(a≠0)與x軸交于A、B兩點(diǎn),與y軸交于點(diǎn)C,且OA=2,OB=8,OC=6.
(1)求拋物線(xiàn)的解析式;
(2)點(diǎn)M從A點(diǎn)出發(fā),在線(xiàn)段AB上以每秒3個(gè)單位長(zhǎng)度的速度向B點(diǎn)運(yùn)動(dòng),同時(shí),點(diǎn)N從B出發(fā),在線(xiàn)段BC上以每秒1個(gè)單位長(zhǎng)度的速度向C點(diǎn)運(yùn)動(dòng),當(dāng)其中一個(gè)點(diǎn)到達(dá)終點(diǎn)時(shí),另一個(gè)點(diǎn)也停止運(yùn)動(dòng),當(dāng)△MBN存在時(shí),求運(yùn)動(dòng)多少秒使△MBN的面積最大,最大面積是多少?
(3)在(2)的條件下,△MBN面積最大時(shí),在BC上方的拋物線(xiàn)上是否存在點(diǎn)P,使△BPC的面積是△MBN面積的9倍?若存在,求點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】求下列各式中的值:
(1) ;(2).
【答案】(1)2 ;(2)3.
【解析】試題分析:(1)、(2)都是把方程兩邊的底數(shù)變?yōu)橄嗤,根?jù)指數(shù)相等得到有關(guān)n的方程,然后解方程即可得.
試題解析:(1)27n=3n+4,
(33)n=3n+4,
33n=3n+4,
所以,3n=n+4,
n=2;
(2),
2×(23)n×(24)n=222,
2×23n×24n=222,
21+3n+4n=222,
所以,1+3n+4n=22,
n=3.
【題型】解答題
【結(jié)束】
21
【題目】一個(gè)多邊形的所有內(nèi)角與它的一個(gè)外角之和是2018°,求這個(gè)外角的度數(shù)和它的邊數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列正確說(shuō)法的是____
①同位角相等; ②等角的補(bǔ)角相等; ③兩直線(xiàn)平行,同旁?xún)?nèi)角相等;④在同一平面內(nèi),過(guò)一點(diǎn)有且只有一條直線(xiàn)與已知直線(xiàn)垂直.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,每個(gè)小正方形邊長(zhǎng)為1,點(diǎn)A的坐標(biāo)為(-2,3)、點(diǎn)B的坐標(biāo)為(-3,1)、點(diǎn)C的坐標(biāo)為(1,-2)
(1)作出△ABC關(guān)于y軸對(duì)稱(chēng)的△A′B′C′(其中A′、B′、C′分別是A、B、C的對(duì)應(yīng)點(diǎn),不寫(xiě)畫(huà)法).
(2) 直接寫(xiě)出A′、B′、C三點(diǎn)的坐標(biāo).
(3)在x軸上求作一點(diǎn)P,使PA+PB的值最小.(簡(jiǎn)要寫(xiě)出作圖步驟)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知,如圖, AB∥CD,∠1=∠2,那么∠E和∠F相等嗎? 為什么?
【答案】相等,理由見(jiàn)解析.
【解析】試題分析:分別過(guò)E、F 點(diǎn)作CD的平行線(xiàn)EM、FN,根據(jù)平行線(xiàn)的性質(zhì)得CD∥FN∥EM∥AB,則∠3=∠1,∠4=∠5,∠1=∠6,而∠1=∠2,于是3+∠4=∠5+∠6.
試題解析:分別過(guò)E、F 點(diǎn)作CD的平行線(xiàn)EM、FN,如圖
∵AB∥CD,
∴CD∥FN∥EM∥AB,
∴∠3=∠2,∠4=∠5,∠1=∠6,
而∠1=∠2,
∴∠3+∠4=∠5+∠6,
即∠BEF=∠EFC.
【題型】解答題
【結(jié)束】
26
【題目】(1)填空21-20=2( ); 22-21=2( ) ;23 -22=2( )
(2)請(qǐng)用字母表示第n個(gè)等式,并驗(yàn)證你的發(fā)現(xiàn).
(3)利用(2)中你的發(fā)現(xiàn),求20+21+22+23+…+22016+22017的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AB∥CD,OE平分∠BOC,OF⊥OE,OP⊥CD,∠ABO=40°,則下列結(jié)論:
①∠BOE=70°; ②OF平分∠BOD;③∠POE=∠BOF; ④∠POB=2∠DOF.
其中正確的結(jié)論有_______________(填結(jié)論前面的序號(hào))
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com